MetaDefender Distributed Cluster
v2.4.0

Table of Contents

Installation

Overview

System requirements

Installation
Physical or Virtual Machine-Based Setup
MetaDefender Distributed Cluster File Storage
MetaDefender Distributed Cluster |dentity Service
MetaDefender Distributed Cluster Worker
MetaDefender Distributed Cluster Control Center
Container-Based Setup
Recommended Setup

License activation
Online Activation
Offline Activation

Module update

Configurations

High Availability

High Availability support for File Storage

High Availability support for RabbitMQ

High Availability support for Redis

High Availability support for PostgreSQL Data lake
System settings

Data Retention

Remote Support Package Gathering

Security

File Storage

Upgrade

© 00 > B

20
30
41
51
56
91
93
94
97
102

106

106
107
110
114
118
128
129
131
134
143

148

System Upgrade

Performance

Performance and Load Estimation

Troubleshooting

Log Gathering in MetaDefender Distributed Cluster

Release Notes

Release notes

API Gateway

Control Center

148

153

153

167

167

170

170

173

237

Overview

a

Administrators

WetaDstender WetaDetender
Worker Worker
MetaDefender ' : ' :
IGentity Service v ! : H .
Ravoitia : . : :
Message broker v | H '
8 M

\4 ' '
> ! |
X = i <
rent MetaDefender ! MetaDefender Core
fents API Gateway

Postgres v

Database server

MetaDefender
ile Storage

The MetaDefender Distributed Cluster (MDDC]) is an approach to serve very large deployments
while offering improved auto-scaling, high availability and fault tolerant capabilities for
MetaDefender Core.

The MetaDefender Distributed Cluster consists of several components:

Component

Functionalities

MDDC Control
Center

MDDC Identity

Assist administrators with user management, system health monitoring,
and deploying or upgrading MetaDefender Core or API Gateway without any
downtime.

Assist Control Center and API Gateway in client authentication, managing

Service user activity sessions and authorization.

MDDC File Securely store and share files asynchronously across components in the
Storage cluster. The component manages the duration and duplication of files.
MDDC Worker Deploy and monitor activities of MetaDefender Core and MDDC API Gateway.
MDDC API Accept file scans, fetch scan statuses, and process download requests
Gateway from clients.

MetaDefender Scan the accepted files.

Core

RabbitMQ - Receives tasks from the API Gateway and forwards them to MetaDefender
Message Core instances for processing.

broker

Redis - Store in-progress results in memory for rapid retrieval.

Caching server

PostgreSQL -
Database sever

Permanently store scan results, configuration and executive reports.

The Distributed Cluster offers users two distinct interfaces. The first is a RESTful interface
provided by MDDC API Gateway for applications to upload files for scanning, retrieve scan status,
download processed files, or abort file scanning. The other is a Web Ul provided by MDDC Control
Center for the system administrator to manage licenses and users, modify workflow
configurations, monitor the overall system, and remotely deploy or upgrade MDDC API Gateway or
MetaDefender Core.

When a file is submitted to the MDDC API Gateway for scanning, its body content is securely
transmitted to MDDC File Storage for subsequent use. APl Gateway submits a scan task in
RabbitMQ queue, and responds to the application with data_id. The task is delivered to healthy
MetaDefender Core instances and one of them will accept the task. The file corresponding to
the task is transmitted from MDDC File Storage to the instance's local storage, and the
processing of the file takes place. Scan results produced by the processing are continuously
recorded in Redis for fast retrieval and are finally stored in the PostgreSQL database for long-term
storage. If created, the sanitized or watermarked file is securely transmitted to MDDC File Storage
for future download by MDDC API Gateway.

In certain rate situations, if one of the MetaDefender Core instances unexpectedly ceases
operation, its 'broken’ files are delivered to other MetaDefender Core instances for continued
processing without the need for applications to resubmit the files. By leveraging MDDC File
Storage and RabbitMQ, MetaDefender Core instances within MetaDefender Distributed Cluster
can collaborate in distributing the workload of archive extraction, greatly decreasing the overall
time required to process archive files while utilizing the resources much more efficiently.

Using the Web Console from by MDDC Control Center, the system administrator is able to adjust
workflow settings centrally and, after which the updates are automatically synced across all
MetaDefender Core instances. The administrator can scale out the number of MDDC API
Gateway or MetaDefender Core instances if additional power is required. He or she can also
upgrade the instances seamlessly while the file processing is occurring. All statistical data and
health information for components, along with executive reports, can be accessed easily through
the Web Ul of MDDC Control Center.

System requirements

Windows
Minimum Recommended
Component version Dependencies System Specs
PostgreSQL Database Server 16.9 Vendor
recommendation

RabbitMQ Messaging Broker 3.13.0 64 bit Erlang/0TP 25.0 Vendor

or above. recommendation
MetaDefender Distributed 2.3.0 Microsoft Visual C++ Minimum of 8
Cluster File Storage Redistributable 2019 CPU cores and 8

version 14.29.30139.0 GB of RAM

or above. required.
MetaDefender Distributed 2.3.0 Microsoft Visual C++ Minimum of 4
Cluster Control Center Redistributable 2019 CPU cores and 4

version 14.29.30139.0 GB of RAM

or above. required.
MetaDefender Distributed 2.3.0 Microsoft Visual C++ Minimum of 4
Cluster Identity Service Redistributable 2019 CPU cores and 4

version 14.29.30139.0 GB of RAM

or above. required.
MetaDefender Distributed 2.3.0 Microsoft Visual C++ Minimum of 4
Cluster Worker for Redistributable 2019 CPU cores and 8
MetaDefender Distributed version 14.29.30139.0 GB of RAM
Cluster APl Gateway or above. required.
MetaDefender Distributed 2.3.0 Microsoft Visual C++ System

Cluster Worker for
MetaDefender Core

Redistributable 2019
version 14.29.30139.0
or above.

Configuration

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements#windows
https://www.rabbitmq.com/docs/which-erlang
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://www.opswat.com/docs/mdcore/installation/recommended-system-configuration#microsoft-windows-deployments

o Info

WMIC, by default, is disabled since Windows 11. To enable it, please run the following
command as Administrator in Command Prompt:

DISM /Online /Add-Capability /CapabilityName:WMIC

Debian/Ubuntu or Red Hat/Rocky

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements#debianubuntu-or-red-hatrocky

Minimum

Recommended

Component version Dependencies System Specs
PostgreSQL Database Server 16.9 Vendor
recommendation
Redis Caching Server 70.5 Vendor
recommendation
RabbitMQ Messaging Broker 3.13.0 64 bit Vendor
Erlang/0TP recommendation
25.0 or above.
MetaDefender Distributed Cluster File 2.3.0 uuid Minimum of 8
Storage package. CPU cores and 8
GB of RAM
tar tool. required.
1sb_release
tool.
MetaDefender Distributed Cluster 2.3.0 uuid Minimum of 4
Control Center package. CPU cores and 4
GB of RAM
tar tool. required.
1sb_release
tool.
MetaDefender Distributed Cluster 2.3.0 uuid Minimum of 4
Identity Service package. CPU cores and 4
GB of RAM
tar tool. required.
1sb_release
tool.
MetaDefender Distributed Cluster 2.3.0 uuid Minimum of 4
Worker for MetaDefender Distributed package. CPU cores and 8
Cluster APl Gateway GB of RAM
tar tool. required.

1sb_release
tool.

https://www.rabbitmq.com/docs/which-erlang

Minimum Recommended

Component version Dependencies System Specs

MetaDefender Distributed Cluster 2.3.0 uuid System

Worker for MetaDefender Core package. configuration
tar tool.

1sb_release
tool.

O o

tar, by default, is not included in some Linux distributions. Please run the following
command in Terminal to install tar:

o Debian/Ubuntu: sudo apt install tar

o Red Hat/Rocky: sudo dnf install tar

o Info

1sb_release, by default, is not included in Rocky. Please run the following command in
Terminal to install 1sb_release

sudo dnf install -y yum-utils
sudo dnf config-manager --set-enabled devel
sudo dnf update -y

sudo dnf install -y redhat-1lsb-core

https://www.opswat.com/docs/mdcore/installation/recommended-system-configuration#linux-deployments

Installation

This section includes guidance for installing and setting up the MetaDefender Distributed Cluster
on physical machines, virtual machines, or in containers.

Physical or Virtual Machine-Based Setup

Before executing the setup, please ensure System requirements are met and that any
necessary dependencies are installed.

Installation order

MetaDefender Distributed Cluster consists of the following components along with their
corresponding default ports.

How to
install
[short Default
Step Component name)] port
1 Redis Caching Server Redis 6379
2 RabbitMQ Message Broker RabbitMQ 5672
3 PostgreSQL Database Server PostgreSQL 5432
4 MetaDefender Distributed Cluster File Storage MDDC File 8890
Storage
5 MetaDefender Distributed Cluster Identity Service MDDC 8891
Identity
Service
6 MetaDefender Distributed Cluster Control Center MDDC Control ~ 8892
Center
7 MetaDefender Distributed Cluster Worker MDDC Worker ~ 8893

The system administrator should adhere to the following service installation sequence to prevent
conflicts:

1. Install Redis, RabbitMQ, Postgres, MDDC File Storage, MDDC Identity Service.

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#installation-order
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-redis-caching-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-rabbitmq-message-broker
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-postgresql-database-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-file-storage
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-identity-service
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-control-center
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-worker

2. Install MDDC Control Center.

3. Install MDDC Worker on the targeted machines (for deploying MDDC API Gateway or
MetaDefender Core).

An exception rule for the firewall needs to be created to permit both incoming (inbound] and
outgoing (outbound] connections to every component.

o Info

While many components can be set up on a single machine, they should be installed
individually on different machines according to their features. Kindly consult Best practices
for further information.

Installation

Install Redis Caching Server

o Info

Redis version 7.0 or higher is required.

Only Redis on Linux is officially recommended.

1. Follow steps to install Redis Caching server.
2. Access Redis configuration file /etc/redis/redis.conf for editing.

3. Comment out the bind setting and set protected-mode option to no.

redis.conf none

The following line should be commented
bind 127.0.0.1

The following line should be uncommented and set to no
protected-mode no

4. Restart the service.

10

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#installation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-redis-caching-server
https://redis.io/docs/latest/operate/oss_and_stack/install/archive/install-redis/install-redis-on-linux/
https://www.opswat.com/distributed-cluster-deployment/mddc-best-practices

bash

Red Hat/Rocky
$ sudo systemctl enable redis
$ sudo systemctl restart redis

Debian/Ubuntu

$ sudo systemctl enable redis-server
$ sudo systemctl restart redis-server

Install RabbitMQ Message Broker

‘, Info

RabbitMQ version 3.13.0 or higher is required.

RabbitMQ functions effectively only with specific supported versions of Erlang. Please refer to
the link for the Erlang-RabbitMQ compatibility matrix.

Windows

1. Download Erlang and follow the instructions to install Erlang.
2. Download RabbitMQ for Windows.

3. Run the executable file as administrator, follow instructions to complete the RabbitMQ
installation.

4. In Command Prompt, change working directory to <RabbitMQ installation
folder>/rabbitmq_server-<version>/sbhin and run the following command:

None bash

> rabbitmqgctl.bat add_user <username> <password>
> rabbitmqctl.bat set_permissions -p / <username>
> rabbitmqctl.bat set_user_tags <username> administrator

Linux

1. Download Erlang and follow the instructions to install Erlang and its dependencies.

2. Download RabbitMQ for Red Hat/Rocky or Debian/Ubuntu .

11

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-rabbitmq-message-broker
https://www.erlang.org/downloads
https://www.rabbitmq.com/install-windows.html#downloads
https://www.erlang-solutions.com/downloads/
https://www.rabbitmq.com/install-rpm.html#downloads
https://www.rabbitmq.com/install-debian.html#manual-installation
https://www.rabbitmq.com/docs/which-erlang#compatibility-matrix

3. In Terminal, run the following command:

bash

Red Hat/Rocky

$ sudo rpm -Uvh --nodeps rabbitmg-server-<rabbitmg
version>.el8.noarch.rpm

$ sudo systemctl enable rabbitmg-server
$ sudo systemctl start rabbitmg-server

Debian/Ubuntu

$ sudo dpkg -i rabbitmg-server_<rabbitmg version>_all.deb

4. In Terminal, run the following command:

None bash

$ sudo rabbitmgctl add_user <username> <password>
$ sudo rabbitmqctl set_permissions -p / <username> "." ", " " "
$ sudo rabbitmgctl set_user_tags <username> administrator

Install PostgreSQL Database Server

‘, Info

PostgreSQL version 16.9 or higher is required.

pg_trgm extension is required for PostgreSQL running on Linux.

1. Download PostgreSQL Database Server.

2. Follow steps to setup Postgres Database Server to allow connections from external
applications.

3. Restart Postgres Database Server.

Install MDDC File Storage
1. Build Ignition file for MDDC File Storage service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the
following command:

bash

12

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-postgresql-database-server
https://www.postgresql.org/download/
https://www.opswat.com/troubleshooting/open-connection-on-postgresql-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-file-storage
https://www.opswat.com/distributed-cluster-deployment/mddc-file-storage-ignition

Windows
msiexec.exe /i <mddc_file_storage_package> /qgn

v

Debian or Ubuntu

$ sudo apt -y install uuid

$ sudo dpkg -i <mddc_file_storage_package> || sudo apt install
-f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_file_storage_package> -y

3. Check the service status.

Install MDDC Identity Service
1. Build Ignition file for MDDC Identity Service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the
following command:

bash

Windows
> msiexec.exe /i <mddc_identity_service_package> /qgn

Ubuntu or Debian

$ sudo apt -y install uuid

$ sudo dpkg -i <mddc_identity_service_package> || sudo apt
install -f

Red Hat or Rocky

$ sudo dnf -y install uuid
$ sudo yum install <mddc_identity_service_package> -y

3. Check the service status.

Install MDDC Control Center
1. Build Ignition file for MDDC Control Center service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the
following command:

bash

13

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-identity-service
https://www.opswat.com/distributed-cluster-deployment/mddc-identity-service-ignition#ignition-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-control-center
https://www.opswat.com/distributed-cluster-deployment/mdcc-control-center-ignition#ignition-file

Windows
> msiexec.exe /i <mddc_control_center_package> /qgn

Ubuntu or Debian

$ sudo apt -y install uuid

$ sudo dpkg -i <mddc_control_center_package> || sudo apt
install -f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_control_center_package> -y

3. Check the service status.

Setup Data Lake and Data Warehouse

1. Goto C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Control Center
directory in Windows Command Prompt or /usr/sbin directory in Linux Terminal.

2. Run the following command:

bash

Windows

> mddc-dbready.exe --host=<postgres-host> --port=<postgres-
port> --user=<postgres-user> --password=<postgres-password> --
target=1lake,warehouse

Linux (Ubuntu, Debian, Red Hat or Rocky)
$ mddc-dbready --host=<postgres-host> --port=<postgres-port> -

-user=<postgres-user> --password=<postgres-password> --
target=1lake,warehouse

‘, Info

Make sure the postgres-user possesses superuser rights to successfully create the
database.

Install MDDC Worker

14

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#setup-data-lake-and-data-warehouse
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-worker

o Info

You need to prepare at least two workers: one for MetaDefender Core and the other for
MDDC API Gateway.

1. Build Ignition file for MDDC Worker service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the
following command:

bash

Windows
> msiexec.exe /i <mddc_worker_package> /qn

Ubuntu or Debian
$ sudo apt -y install uuid
$ sudo dpkg -i <mddc_worker_package> || sudo apt install -f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_worker_package> -y

3. Check the service status.

4. Repeat the above steps for other MDDC Workers.

Configurations

When all MDDC Worker instances are installed successfully, it marks a completed installation.
Now, heading to essential configuration steps.

Connect essential services

O o

Essential services for the Distributed Cluster includes Redis, Postgres, RabbitMQ, and MDDC
File Storage.

The system is operational only when MDDC Control Center can effectively connect to all
essential services.

1. Sign in to MDDC Control Center web console with the initial administrator user account
that you created in Install MDDC Identity Service.

15

https://www.opswat.com/distributed-cluster-deployment/mddc-worker-ignition#ignition-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#configurations
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#connect-essential-services

2. Goto Inventory > Services, open the relevant service category, and click on Add

service.

OPSWAT.
Metabefender
Distributed Custer

8 Dashboard >
© History >
O3 Workflow Management >
2, User Management
® inventory v

Services

Workers.

Packages

Modules

Licenses

Certficatos

@ settings

£ Ploase connectalsenvices bow.

v Tee Instance Count @

W Dataloke a0

£ senvceis not connected

Noservices have been added. Please add service o connect the system,

+ Addservice
v e Instance Count @
O DataWarehouse a0

2 senvces not connected
Noservices have been added. Please add service to connect the systam.

+ Add sorvice

v e Instance Count @

& Fiesorge a0
& service is not connected
No senices have been added.Plaase add saice to connect te ysten

+ Add service

4. Complete all necessary fields as specified by the selected services.

OPSWAT.
Metabefender
Distrbuted Cluster

88 Dashbosrd >
© Hitory >
93 vorkfiow Management >
2, UserManagement

@ inventory v

Services
Workers
Packages
Moduies

Certiicates.

@ settings

5. Save result.

v e Instance Count @

B Oata Warehouse a0

A Senviceis not connected

Noservices have been added. Please add service to comect thesystem.

Data Warehouse Server

Usernamer
postres
¥
v Tie Instance Count. @
@ Filestorage a0

£ seniceisnot connected

No.

File Storage Server

Connection Key*

¢ have been added. lease add service ta connect thesystem.

°
Staws

Unconnected

Status

Unconnected

status

Unconnected

°

£=]

CRetresn

statvs
Unconnected
Host® Portt
192168701 s
Password”
Staws
Unconnected
Host® Pont*
821681011 £

6. Check status of the service connections.

OPSWAT.
MetaDafender
Distrbuted Cluster

88 Dashboard >

%}

History >

o3

Workfiow Management >

*

User Management
@ Inventory v
Services

Workers

Packages

Modles

Certficates

@ seuings

Inventory / Services

 Allyour srvicesare connected. You can sertdeploying. 5o to Workers

> e Instance Count @
W DataLake n

> e Instance Count ®
W Data Worehouse n

> e Instance Count ®
& FileStorage "

> e nstance Count @
W Rabbitvo n

> e Instance Count ®
< Redis "

Status

Healthy

Status

Heaithy.

Status

Hoalthy.

Status.

Healthy

Status

Healthy.

16

@ Rofrosh

Submit MetaDefender Core and MDDC API Gateway packages

o Info

The packages are installation files of MetaDefender Core and MDDC API Gateway,
will be subsequently deployed on MDDC Worker remotely by MDDC Control Center.

which

Various versions of installation files may be submitted to MDDC Control Center. The correct

version to install will be chosen during Deployment phase.

1. Sign in to MDDC Control Center web console with the initial administrator user
that you created in Install MDDC Identity Service.

2. Goto Inventory > Packages and select Upload package.
3. Select MetaDefender Core or MDDC API Gateway installation files.

4. Click Update.

OPSWAT.
;
o tor

ometascan-5142-1564msi {2} MetaDefender Core Windons. 512

madc-api-gateway-2.00-1xB4.msi ¥ AP Gateway Windows. 200

Connect to MDDC Workers

1. Sign in to MDDC Control Center web console with the initial administrator user
that you created in Install MDDC Identity Service.

2. Goto Inventory > Workers and select Add workers.

3. Complete the required fields to add new workers and select Submit.

B X & 6 8

4. Check the status of MDDC Worker connections.

17

account

account

......

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#submit-metadefender-core-and-mddc-api-gateway-packages
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#connect-to-mddc-workers

%
D

omw Name e Version Instance Version Prattorm Status CUD RMD Dk® Host port =

[[oB8G200842060... Worker] 200

vincows atable 8 nree westa s =

worers [s2mdefa0omsa.. Worker2 200 Windows Avataie ® 3208 eee 162068101 =

Deploy MetaDefender Core and MDDC AP| Gateway instances

1. Sign in to MDDC Control Center web console with the initial administrator user account
that you created in MDDC Identity Service.

2. Goto Inventory > Workers and select Deploy workers.

3. Choose the workers for deployment and decide which package will be deployed on the
workers.

=53

Advanced Sattings

B tame Version Platform O RMO DKO Hos Port

B workert 200 Windous s 1768 LESGR eeann e

O RMO DKO Host pot

% 208 weGE wmewl e

O o

The license to activate MetaDefender Core instances can be selected in this phrase.

Advanced settings (enable HTTPS, select log level, define engine parallel count, etc.] are
configurable.

4. Choose Next.
5. Confirm the deployment details, then click Deploy and Finish.

6. Hold off until the deployment is completed successfully.

18

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#deploy-metadefender-core-and-mddc-api-gateway-instances

OPSWAT. . o

Disributed Cluster

Inventory / Workers oeptoyworkers v |

ORetresn

88 Deshboard >
© sy > Q seacniynane

8 Worklow Menagement >
omw Name e Version Instance Version Platform Status WO MMO DKO host Port =

2, UserManagement
O sseszannans.. workert X AP1Gotonay 200 200 vingons Ruming [e mesee wseon cess

@ inventory v
- [o23scafe0omasa... Worker2 @) MetaDefender Core 200 sm2 vindows Aunning ® 3208 19968 w28l 23

Workers
Packages
Lcenses

Centicates.

@ setungs

7. Once the system is up, MDDC API Gateway can efficiently accept scan requests.

19

MetaDefender Distributed Cluster File
Storage

Ignition file

O o

The ignition file is required only for a clean installation.
The following fields are essential for the ignition file:

e secure.connection_key
e secure.private_key

e secure.certificate

To install MetaDefender Distributed Cluster (MDDC] File Storage server, ignition file in YML format
is required at the following location:

e Windows: C:\opswat\mddc_file_storage.yml

o Linux: /etc/opswat/mddc_file_storage.yml

The ignition file includes fields:

20

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#ignition-file

Key Value

path type Accepted values Required Description

sec String A string from 4 to 64 Required An arbitrary string that enables

ure. character long containing clients to connect to the server.

conn digits from 0 to 9 and

ecti characters from a/A to Use this value as input when

- 2/7 adding MDDC File Storage in

key the Ul of MDDC Control Center.

sec String Required Content of private key in X509

ure. format.

priv

ate

_ke

Y/

sec String Required Content of certificate in X509

ure. format.

cert

ifi

cat

e

sto String Optional Path to an existing directory

rage where the MDDC File Storage

.pa server stores its files. The

th server requires full
permissions to access the path
in Linux.

res String Optional IP address [V4/V6)] or host

t.h where the server resides on.

ost Default value is ***
Notes: value '*' allows the
service to accept connections
from all network interfaces.
To bind the service to a specific
interface, specify its IP address
or domain name. For example,
to listen on all IPv4 interfaces,
setthe hostto 0.0.0.0

res Number Optional The port where the server

t.p resides on. Default value is

ort 8890

21

Key Value

path type Accepted values Required Description

log String . file Optional Type of log device.
.str

A— e syslog

[@].

log_

typ

@

log String o dump Optional Level of log message.
.str

-~ e debug

[e]. e info

log_ e warning

lev

- e error

log String If Optional Location where logs are
.str log.streams[@].log_ty written.

eams pe is "file" then

[@]. log.streams[@].log_pa

log_ th is the path to a file on

pat file system where logs

h are written.

If
log.streams[@].log_ty
pe is "syslog" then

e log.streams[@].1
og_path can be
[tep/udp]://host
:port where
host:port is the
host and port to a
remote syslog
server that
supports TCP or
UDP protocol.

e log.streams[@].1
og_path can be
"local" to write
log to local syslog
server [Linux only].

22

0 Info

If storage.path is not defined in the Ignition file, MetaDefender Distributed Cluster File
Storage will save the submitted files in the default storage directory according to the
platform:

e On Windows, <install-directory>/data/storage

e On Linux, /var/lib/mddc-file-storage/storage

The default storage directory will be deleted when MDDC File Storage is uninstalled.

Configuration file

After successfully installing, MDDC File Storage generates a configuration file with changeable
settings at the following location:

e Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster File
Storage\mddc_file_storage.yml

e Linux: /etc/mddc-file-storage/mddc_file_storage.yml

O o

The service must be restarted to take the new configurations into effect.

Sample

0 Info

OpenSSL or a similar tool (e.g., ssh-keygen] can create a pair of public and private keys in
X.509 format.

yaml

23

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#configuration-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#sample

secure:
connection_key: "1234abcd" # [0-9a-zA-Z]{4,64}
private_key: |

MITJQwIBADANBgkghkiG9wOBAQEFAASCCSOwggkpAgEAAOICAQC]jYtuWaICCY@
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I1602mglqcLhT/kmpoR8Di3DAm
HK

NSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
77

toGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SuU

0x1Z13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd@sibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK412p
HN

uC53QVc/EF++GBLAXxmvCDq9ZpMIYi70mzkkAKKCOUeb6Ef217LFQCFIBKIZzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfqnVeOnPN1IM
Sn

zXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAOICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di70ZxNcKyw35LFEghkgtQgqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg@ewlLdBCOZVw+wPABlaqz+BUOiSMMftp
k9

fz9JWGd8ERYBsT+tk3Qi6DOVPZVsC1KgxxL/cwIFd3Hf2ZBtJXeBKBn1pktWht
5A

24

Kgx9m1d20v17NjgiC1Fx9r+fZw/i0abFFwQA4dr+R8mEMK/7bd4VXfQ10/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBt0DU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKT1
Q8

YZkpIcLNVLWOUsOoGYHFm2rvCyEV1fsE3Ub8cFyTFk50Se0cF2QL2xzKmmbZEpX
gl

xBHROhjgonBIKJDGfor4bHO7Nt+1Ece8u20TEKvpz5aIn440eC5mApRGy83/0b
Vs

esnWjDE/bGpoT8qFuy+0QurDEPNId44XcJm1IRI1G56ErxC310s11wrIpTmXXck
qw

zFR9s22z7f0zjeyxqZg4NTPI7wkM3M8BX1vp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgH124nTgBOUH10jZsABAoIBAQDOXxftSDbSqGytcWqPYP3SZHAWDABO4ACEM+e
Cw

au9ASutl1OIDINDMJ8NC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40Qdyk11TzTVROgmP8+efreIvqlzHmuqaGfGs50TkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qga++xh5mfE25c+MIfiIBTiNS041TxWMBShnK8xrGaMEmN7WeqTMb
FH

PgQz5FcxRjCCqwHilwNBelLDTp/ZECEB7y34khVh531TmBE2mNzSVIQcGZP1I/Dv
X]

W7UUNdgFwii/GW+6MOuUDy23UVQpbFzcV801C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6Wx0KjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Z019BowytN+t
ré

2ZFoIBA9Ubc9esEAU813fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOMbSUNN3PG
2m

39I802uBfFNVQCJIKhxTmTMFFLOU71VcDS9JN+0YVPb6MDfBLM5j0iPuYkFZ4gH
79

J79gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw

25

DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYcOrlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7A0IBAGKzZKIMDXdCxBWKhNYJ8z7hiItN11IZZMW2TPUiY@rléya
Ch

BVXjMOWOre7QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfX0909ulYLokr
wQ

x1dB15UnuTLDqw8bChq705y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZET
HI

ULGANVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns60Ds6Th9AECggEBAJYZzd+S0Y0261iBu3nw
3L

65uEeh6xou8pXHBTu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7T0jt41UdqIKO8VvN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCYEXIELOuzWAMKzg7CAII1INS9foWelyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jhovK9yrwF6X44ItRo0JafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLg+ra50aYMxbcuommctPMXU6CTrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt /8yvPf1S+xv3kg/ZBvR9JB1IN2n3rUCYYD47ReKFqJO3Vmq5C9
ny

56s9w70U08perBX1JYmKZQh042931vxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTWOLGVCpjcQoaKvymAoCmAs8V20
Mr

Ziw1YQ9uOUoWwOgm1wZgmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDODOaqgkSY
3E

26

NgOvbCV1/0UpRi3076khCoAXITbKSn/AvR3KDP14B5toHI/F50TSEiGhhHesgR
rs
fBrpEY1IATtPq1taBZZogRqI3rOkkPk=

MIIF5jCCA86gAWIBAgIJANG50IuwPFKgMABGCSqGSIb3DQEBCWUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GATUECAWHRXJ1d2hvbjETMBEGATUEBWWKQWXxSIGFyb3VuZD
Eb

MBkGATUECgwSbG1id2Vic29ja2VOcy10ZXNOMRIWEAYDVQQDDAl1sb2NhbGhvc3
Qx

HzAdBgkghkiGO9wOBCQEWEG5vbmVAaW52YWxpZC5vemcwIBCNMTgwMzIwMDQxXN j
A3

WhgPMjEXxODAYMjQwWNDE2MDdaMIGGMQswCQYDVQQGEwWJHQjEQMA4GATUECAWHRX
J1

d2hvbjETMBEGATUEBWWKQWxsIGFyb3VuZDEbMBKGATUECgwSbGlid2Vic29ja2
Vo

cyT10ZXNOMRIWEAYDVQQDDA1sb2NhbGhvc3QxHzAdBgkqhkiGO9wBBCQEWEGSvbm
VA

aW52YWxpZC5vcemcwggIiMABGCSqGSIb3DQEBAQUAA4ICDWAWggIKAOICAQC)jYt
uW

aICCYBtJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAMHKNSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSUOXx1Z13d6ehLRm7 /+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+
mé6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
wQ

Ujy5N8pSNp7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK412pHNuC53QVc/EF++GBLAXmvCDQ9ZpMIYi70mzkk AKKC9UebEf217LFQCFI

27

BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfgn
Vo

NPN1IMSnzXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
Z0

GMTvP/AuehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
Qu

ImYU23tW2zsomkKTAXarjr2vjuswHwYDVROjBBgwFoAUImMYU23tW2zsomkKTAX
ar

jr2vjuswbwYDVROTAQH/BAUWAWEB/zANBgkghkiGO9wOBAQsFAAOCAGEANJIBMr
ow

YNCbhAJdP7dh1hT2RUFRdeRUJDOIxXrH/hkvb6émyHHNnK8n0YezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z2600uWVk+7DNNLHI9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsil6Ul6cyBQlTJWKVLEUQQ6Yyda582e23J1AXqtgFcpfoE
34

H3afEiGy882b+ZBiwkeV+0q6XVF8sFyr9zYrv9CvWTY1lkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDROaRLR1vxUa9dHGFHLICG34Juq5Ai61M1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZy
2g

TWpTH1umlC1ZeP+G/jkSyDwgNnTulaodDmUa4xZodfhPTHWPWUKFcq80Qr148Q
YA

A01bUOJQU7QwWRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUUTWjMbWg6
Gg

mnIZLRerQCu100zr87r0QqQakPkyt8BUSNK3K42j2qcfhAONdR18Hq8Qs5pupy
+s

8sdCGD1wWR3JNCMv6u480K87F4mcIxhkSefFJUFII25pCGNSWtE4p51+9¢cn01Gr
IX

28

e2H1/7MOc/1bZ4FvXgARlex2rkgSOKa0B6HE=

29

MetaDefender Distributed Cluster Identity
Service

Ignition file

O o

The ignition file is required only for a clean installation.
The following fields are essential for the ignition file:

e secure.connection_key
e secure.private_key

e secure.certificate

e database.host

e database.port

e database.user

e database.password

To install MetaDefender Distributed Cluster (MDDC]) Identity Service server, ignition file in YML
format is required at the following location:

e Windows: C:\opswat\mddc_identity_service.yml

e Linux: /etc/opswat/mddc_identity_service.yml

The ignition file includes fields:

30

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#ignition-file

Key Value

path type Accepted values Required Description

secur String A string from 4 to 64 Required An arbitrary string that

e.con character long containing enables clients to connect

necti digits from 0 to 9 and to the server.

on_ke characters from a/A to z/Z

y Use this value for the key
identity.connection_key
in configuration file of
MetaDefender Distributed
Cluster Control Center.

secur String Required Content of private key in

e.pri X509 format.

vate_

key

secur String Required Content of certificate in

e.cer X509 format.

tific

ate

datab String Required IP address / domain name

ase.h of the server where

ost PostgreSQL server locates.

datab Number Required Port of PostgreSQL server is

ase.p listening for connections

ort from clients.

datab String Required PostgreSQL server's user.

ase.u

- SUPERUSER privilege is
required to setup the
server's database and
extensions for the first
time.

datab String Required PostgreSQL server's user

ase.p credentials.

asswo

rd

31

Key Value

path type Accepted values Required Description

rest String Optional IP address (V4/V6] or host

.host where the server resides
on. Default value is ***
Notes: value '*' allows
the service to accept
connections from all
network interfaces.
To bind the service to a
specific interface, specify
its IP address or domain
name. For example, to
listen on all IPv4 interfaces,
setthe hostto ©6.0.0.0

rest Number Optional The port where the server

.port resides on. Default value is
8891

log.s String . file Optional Type of log device.

tream

s[e]. ¢ syslog

log_t

ype

log.s String « [dlimp Optional Level of log message.

tream

s[e]. e debug

log_1 e info

evel .

e warning

e error

32

Key Value
path type Accepted values Required Description
log.s String If Optional Location where logs are
tream log.streams[@].log_type written.
s[@]. is "file" then
log_p log.streams[@].log_path
ath is the path to a file on file
system where logs are
written.
If
log.streams[@].log_type
is "syslog" then
e log.streams[@].log
_path can be
[tep/udp]://host:
port where host:port
is the host and port
to a remote syslog
server that supports
TCP or UDP protocol.
e log.streams[@].log
_path can be
"local" to write log
to local syslog server
[Linux only].
user String Optional User name for the initial
.name administrator user account.
user. String Optional Password for the initial
passw administrator user account.
ord
user. String Basic email format, a string Optional E-mail address for the
email starts with non initial administrator user

whitespace/non @
characters, contains one
@symbol, and ends with
non whitespace/non @
characters.

33

account.

Key Value

path type Accepted values Required Description
user. String string of exactly 36 Optional API key for the initial
apike characters composed of administrator user account.
y uppercase and lowercase
letters (A-Z, a-z] and digits
(0-9]

Configuration file

After successfully installing, MDDC Identity Service generates a configuration file with changeable
settings at the following location

o Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Identity
Service\mddc_identity_service.yml

e Linux: /etc/mddc-identity-service/mddc_identity_service.yml

o Info

The service must be restarted to take the new configurations into effect.

Sample

database.host, database.port, database.user, and database.password should be
updated with the appropriate values of your Postgres host/IP, port, username, and password.

O o

OpenSSL or a similar tool [e.g., ssh-keygen] can create a pair of public and private keys in
X.509 format.

yaml

34

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#configuration-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#sample

database:
host: "your_postgres_host"
port: 5432
user: "your_postgres_username"
password: "your_postgres_admin_password"
secure:
connection_key: "1234abcd" # [0-9a-zA-Z]{4,64}
certificate:

MIIF5jCCA86gAWIBAgIJANG50IuwPFKgMABGCSqGSIb3DQEBCWUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GATUECAWHRXJ1d2hvbjETMBEGATUEBWWKQWXxSIGFyb3VuZD
Eb

MBkGATUECgwSbG1id2Vic29ja2VOcy10ZXNOMRIWEAYDVQQDDAl1sb2NhbGhvc3
Qx

HzAdBgkghkiG9wOBCQEWEG5vbmVAaW52YWxpZC5vemcwIBCcNMTgwMzIwMDQxXN j
A3

WhgPMjEXxODAyMjQwNDE2MDdaMIGGMQswCQYDVQQGEwWJHQjEQMA4GATUECAWHRX
J1

d2hvbjETMBEGATUEBWWKQWxsIGFyb3VuZDEbMBKGATUECgwSbGlid2Vic29ja2
Vo

cyTOZXNOMRIWEAYDVQQDDA1sb2NhbGhvc3QxHzAdBgkqhkiGO9wBBCQEWEGSvbm
VA

aW52YWxpzZC5vemewggIiMABGCSqGSIb3DQEBAQUAA4ICDWAWggIKAOICAQC]jYt
uW

aICCYBtJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mql1qcLhT/kmpo
R8

Di3DAMHKNSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSUOXx1Z13d6ehLRm7 /+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+
mé6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
wQ

35

Ujy5N8pSNp7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK412pHNuC53QVc/EF++GBLAXxmvCDq9ZpMIYi70mzkk AKKCOUe6Ef217LFQCFI
BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqgn
ve

NPN1IMSnzXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTVvP/AuehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC
op

sNcjTMaBQLNO3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABoTMWUTAdBgNVHQ4EFg
Qu

ImYU23tW2zsomkKTAXarjr2vjuswHwYDVROjBBgwFoAUIMYU23tW2zsomkKTAX
ar

jr2vjuswDwYDVROTAQH/BAUWAWEB/zANBgkqhk1GOw8BAQsFAAOCAGEAN IBMr
ow

YNCbhAJdP7dh1hT2RUFRdeRUJDOIXxrH/hkvbé6myHHNnK8n0YezFPjUlmRKUgNED
uA

xbnXZzPdCRNVOV2mShbXvCyiDY7WCQE2Bn44z2600uWVk+7DNNLHIBnkwUtONnM
9P

wtmD9phWexm4q2GnTsil6Ul6cyBQlTJWKVLEUQQ6Yda582e23J1AXqtgFcpfoE
34

H3afEiGy882b+ZBiwkeV+0q6XVF8sFyr9zYrv9CvWTY1lkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDROaRLR1vxUa9dHGFHLICG34Juq5Ai61MTEsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wFTuuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
29

TWpTH1lumlC1lZeP+G/jkSyDwgNnTulaodDmUa4xZodfhPTHWPwWUKFcq80Qr148Q
YA

A01bU0JQU7QWRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUUTWjMbWg6
Gg

mnIZLRerQCu100zr87r0QqQakPkyt8BUSNK3K42j2qcfhAONdR18Hq8Qs5pupy
+s

36

8sdCGD1wWR3JUNCMv6u480K87F4mcIxhkSefFJUFII25pCGNSWtE4p51+9¢cn01Gr
IX
e2H1/7MOc/1bZ4AFvXgARlex2rkgSOKaB6HE=

MITJQwIBADANBgkqhkiG9wOBAQEFAASCCSOwggkpAgEAAOICAQCjYtuWaICCY®
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo51602mglqcLhT/kmpoR8Di3DAm
HK

NSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
7

toGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SuU

0x1Z13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK412p
HN

uC53QVc/EF++GBLAXxmvCDq9ZpMIYi70mzkkAKKC9Ueb6Ef217LFQCFIBKIZzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfqnVenPN1IM
Sn

zXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtWe1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAOICAFWe8MQZb37k2gdAV3Y6aq
8f

gqokKQqbCNLd3giGFwYkezHXoJfg6Di70ZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsgOewlLdBCOZVw+wPABlaqz+BUOiSMMftp
k9

37

fz9JWGd8ERYBsT+tk3Qi6DOVPZVsC1KgxxL/cwIFd3Hf2ZBtJXeBKBn1pktWht
5A

Kgx9m1d20v17NjgiC1Fx9r+fZw/i0abFFwQA4dr+R8mEMK/7bd4VXfQ10/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i17gDjLAIBQeDhP409ZhswIEc/GBtODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDy jKT1
Q8

YZkpIcLNVLWOuUsoGYHFm2rvCyEV1fsE3Ub8cFyTFk50Se0cF2QL2xzKmmbZEpX
gl

xBHROhjgonBIKJIDGfor4bHO7Nt+1Ece8u20TEKvpz5aIn440eC5mApRGy83/06b
Vs

esnWjDE/bGpoT8qFuy+0QurDEPNId44XcJm1IRI1G56ErxC310s11wrIpTmXXck
qw

ZFR9s2z7f0zjeyxqZg4NTPI7wkM3M8BX1vp2GTBIeoxrWB4V3YArwu8QF806QBg
Vz

mgH124nTgBOUH10jZsABA0oIBAQDOXxftSDbSqGytcWqPYP3SZHAWDABO4ACEM+e
Cw

au9ASut18IDINDMJ8NC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40Qdyk11TzTVROgmP8+efreIvqlzHmuqaGfGs50TkZaWj5su+B+bT+9rIwZewf
S5

YRINhQRx17qa++xh5mfE25c+M9fiIBTiNS041TxWMBShnK8xrGaMEmMN7WeqTMb
FH

PgQz5FcxRjCCqwHilwNBelLDTp/ZECEB7y34khVh531mBE2mNzSVIQcGZP1I/Dv
XJ

W7UUNdgFwii/GW+6MOuUDy23UVQpbFzcV801C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6WxO0KJjX8MCu9/cKPnwBv2mmI2jgGxHTwS5sr3ahmF5eTb8Zo19Bowy tN+t
ré

2ZFoIBA9Ubc9esEAU813fggdfM82cuR9sGefQVoCh8tMg6BP8IBLOMbSUNN3PG
2m

39I802u@fFNVQCJKhxTmTMFFLOU71VcDS9JN+0YVPb6MDfBLMS5jO0iPuYkFZ4gH

38

79

J7gXI0/YKhad7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw
DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYcOrlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7A0IBAGKzZKIMDXdCxBWKhNYJ8z7hiItN11IZZMW2TPUiYOrléya
Ch

BVXjMI9WOre7QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EO0jCZ5IUufIvEpqVSmtF8MqfX0909uIYLokr
wQ

x1dB15UnuTLDqw8bChq705y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZET
HI

ULGdNVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns60Ds6Th9AECggEBAJYzd+S0Y026iBu3nw
3L

65uEeh6xou8pXHBTu4gQrPQTRZZ/nT31iNgOwqu1gRuxcq7T0jt41UdqIKO8vN7
/A

adJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTT1i7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCYEXIELOuzWAMKZzg7CAiI1NS9foWelLyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9vK9yrwF6X44ItRo0JafCaVfGI+175q/eWcqTX4q
+1

G4tKls4sL4mgOJLg+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmMt /8yvPf1S+xv3kg/ZBvR9JB1In2n3rUCYYD47ReKFqJB3Vmq5C9
nY

56s9w70U08perBX1JYmKZQh042931vxZD2Iq4NcZbVSCMoHAUZzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTWOLGVCpjcQoaKvymAoCmAs8V2o
Mr

39

Ziw1YQ9uOUoWwOgmiwZagmVcOXvPIS2gWAs3fQLlWjH9hkcQTMsUaXQDODBagkSY
3E

NgOvbCV1/0UpRi3076khCoAXITbKSn/AvR3KDP14B5toHI/F50TSEiGhhHesgR
rs

fBrpEY1IATtPq1taBZZogRqI3rOkkPk=

40

MetaDefender Distributed Cluster Worker

Ignition file

° Info

The ignition file is required only for a clean installation.
The following fields are essential for the ignition file:

e secure.connection_key
e secure.private_key

e secure.certificate

To install MetaDefender Distributed Cluster (MDDC) Worker server, ignition file in YML format is
required at the following location:

* Windows: C:\opswat\mddc_worker.yml

e Linux: /etc/opswat/mddc_worker.yml

The ignition file includes fields:

a1

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#ignition-file

Key Value

path type Accepted values Required Description

sec String A string from 4 to 64 character long Required An arbitrary string

ure. containing digits from 0 to 9 and that enables clients

conn characters from a/A to z/Z to connect to the

ecti server.

on_

key Use this value as
input when adding a
MDDC Worker in the Ul
of the MDDC Control
Center.

sec String Required Content of private key

ure. in X609 format.

priv

ate

_ke

Y/

sec String Required Content of certificate

ure. in X609 format.

cert

ifi

cat

®

res String Optional IP address (V4/V6) or

t.h host where the server

ost resides on. Default

42

value is "*'

Notes: value

"x' allows the
service to accept
connections from all
network interfaces.

To bind the service to
a specific interface,
specify its IP address
or domain name. For
example, to listen on
all IPv4 interfaces, set
the hostto 0.0.0.0

Key Value

path type Accepted values Required Description

res Number A string from 4 to 64 character long Optional The port where the
t.p containing digits from 0 to 9 and server resides on.
ort characters from a/A to z/Z Default value is 8893
log String . file Optional Type of log device.
.str

- e syslog

[e].

log_

typ

€

log String o 'dump Optional Level of log message.
.str

a— e debug

[e]. e info

log_ e warning

lev

el e error

log String If log.streams[@].log_type is Optional Location where logs
.str "file" then are written.

eams log.streams[@].log_path is the

[@]. path to a file on file system where

log_ logs are written.

pat

h If log.streams[@].log_type is

"syslog" then

e log.streams[@].log_path
can be
[tep/udp]://host:port
where host:port is the host
and port to a remote syslog
server that supports TCP or
UDP protocol.

e log.streams[@].log_path
can be "local" to write log
to local syslog server [Linux
only].

Configuration file

43

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#configuration-file

After successfully installing, MDDC Worker generates a configuration file with changeable
settings at the following location::

o Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster
Worker\mddc_worker.yml

e Linux: /etc/mddc-worker/mddc_worker.yml

© inro

The service must be restarted to take the new configurations into effect.

Sample

0 Info

OpenSSL or a similar tool (e.g., ssh-keygen] can create a pair of public and private keys in
X509 format.

yaml

a4

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#sample

secure:
connection_key: 1234abcd
private_key: |

MITJQwIBADANBgkghkiG9wOBAQEFAASCCSOwggkpAgEAAOICAQC]jYtuWaICCY@
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I1602mglqcLhT/kmpoR8Di3DAm
HK

NSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
77

toGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SuU

0x1Z13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd@sibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK412p
HN

uC53QVc/EF++GBLAXxmvCDq9ZpMIYi70mzkkAKKCOUeb6Ef217LFQCFIBKIZzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfqnVeOnPN1IM
Sn

zXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAOICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di70ZxNcKyw35LFEghkgtQgqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg@ewlLdBCOZVw+wPABlaqz+BUOiSMMftp
k9

fz9JWGd8ERYBsT+tk3Qi6DOVPZVsC1KgxxL/cwIFd3Hf2ZBtJXeBKBn1pktWht
5A

45

Kgx9m1d20v17NjgiC1Fx9r+fZw/i0abFFwQA4dr+R8mEMK/7bd4VXfQ10/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBt0DU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKT1
Q8

YZkpIcLNVLWOUsOoGYHFm2rvCyEV1fsE3Ub8cFyTFk50Se0cF2QL2xzKmmbZEpX
gl

xBHROhjgonBIKJDGfor4bHO7Nt+1Ece8u20TEKvpz5aIn440eC5mApRGy83/0b
Vs

esnWjDE/bGpoT8qFuy+0QurDEPNId44XcJm1IRI1G56ErxC310s11wrIpTmXXck
qw

zFR9s22z7f0zjeyxqZg4NTPI7wkM3M8BX1vp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgH124nTgBOUH10jZsABAoIBAQDOXxftSDbSqGytcWqPYP3SZHAWDABO4ACEM+e
Cw

au9ASutl1OIDINDMJ8NC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40Qdyk11TzTVROgmP8+efreIvqlzHmuqaGfGs50TkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qga++xh5mfE25c+MIfiIBTiNS041TxWMBShnK8xrGaMEmN7WeqTMb
FH

PgQz5FcxRjCCqwHilwNBelLDTp/ZECEB7y34khVh531TmBE2mNzSVIQcGZP1I/Dv
X]

W7UUNdgFwii/GW+6MOuUDy23UVQpbFzcV801C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6Wx0KjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Z019BowytN+t
ré

2ZFoIBA9Ubc9esEAU813fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOMbSUNN3PG
2m

39I802uBfFNVQCJIKhxTmTMFFLOU71VcDS9JN+0YVPb6MDfBLM5j0iPuYkFZ4gH
79

J79gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw

46

DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYcOrlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7A0IBAGKzZKIMDXdCxBWKhNYJ8z7hiItN11IZZMW2TPUiY@rléya
Ch

BVXjMOWOre7QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfX0909ulYLokr
wQ

x1dB15UnuTLDqw8bChq705y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZET
HI

ULGANVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns60Ds6Th9AECggEBAJYZzd+S0Y0261iBu3nw
3L

65uEeh6xou8pXHBTu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7T0jt41UdqIKO8VvN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCYEXIELOuzWAMKzg7CAII1INS9foWelyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jhovK9yrwF6X44ItRo0JafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLg+ra50aYMxbcuommctPMXU6CTrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt /8yvPf1S+xv3kg/ZBvR9JB1IN2n3rUCYYD47ReKFqJO3Vmq5C9
ny

56s9w70U08perBX1JYmKZQh042931vxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTWOLGVCpjcQoaKvymAoCmAs8V20
Mr

Ziw1YQ9uOUoWwOgm1wZgmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDODOaqgkSY
3E

47

NgOvbCV1/0UpRi3076khCoAXITbKSn/AvR3KDP14B5toHI/F50TSEiGhhHesgR
rs
fBrpEY1IATtPq1taBZZogRqI3rOkkPk=

MIIF5jCCA86gAWIBAgIJANG50IuwPFKgMABGCSqGSIb3DQEBCWUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GATUECAWHRXJ1d2hvbjETMBEGATUEBWWKQWXxSIGFyb3VuZD
Eb

MBkGATUECgwSbG1id2Vic29ja2VOcy10ZXNOMRIWEAYDVQQDDAl1sb2NhbGhvc3
Qx

HzAdBgkghkiGO9wOBCQEWEG5vbmVAaW52YWxpZC5vemcwIBCNMTgwMzIwMDQxXN j
A3

WhgPMjEXxODAYMjQwWNDE2MDdaMIGGMQswCQYDVQQGEwWJHQjEQMA4GATUECAWHRX
J1

d2hvbjETMBEGATUEBWWKQWxsIGFyb3VuZDEbMBKGATUECgwSbGlid2Vic29ja2
Vo

cyT10ZXNOMRIWEAYDVQQDDA1sb2NhbGhvc3QxHzAdBgkqhkiGO9wBBCQEWEGSvbm
VA

aW52YWxpZC5vcemcwggIiMABGCSqGSIb3DQEBAQUAA4ICDWAWggIKAOICAQC)jYt
uW

aICCYBtJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAMHKNSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSUOXx1Z13d6ehLRm7 /+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+
mé6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
wQ

Ujy5N8pSNp7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK412pHNuC53QVc/EF++GBLAXmvCDQ9ZpMIYi70mzkk AKKC9UebEf217LFQCFI

48

BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfgn
Vo

NPN1IMSnzXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
Z0

GMTvP/AuehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
Qu

ImYU23tW2zsomkKTAXarjr2vjuswHwYDVROjBBgwFoAUImMYU23tW2zsomkKTAX
ar

jr2vjuswbwYDVROTAQH/BAUWAWEB/zANBgkghkiGO9wOBAQsFAAOCAGEANJIBMr
ow

YNCbhAJdP7dh1hT2RUFRdeRUJDOIxXrH/hkvb6émyHHNnK8n0YezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z2600uWVk+7DNNLHI9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsil6Ul6cyBQlTJWKVLEUQQ6Yyda582e23J1AXqtgFcpfoE
34

H3afEiGy882b+ZBiwkeV+0q6XVF8sFyr9zYrv9CvWTY1lkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDROaRLR1vxUa9dHGFHLICG34Juq5Ai61M1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZy
2g

TWpTH1umlC1ZeP+G/jkSyDwgNnTulaodDmUa4xZodfhPTHWPWUKFcq80Qr148Q
YA

A01bUOJQU7QwWRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUUTWjMbWg6
Gg

mnIZLRerQCu100zr87r0QqQakPkyt8BUSNK3K42j2qcfhAONdR18Hq8Qs5pupy
+s

8sdCGD1wWR3JNCMv6u480K87F4mcIxhkSefFJUFII25pCGNSWtE4p51+9¢cn01Gr
IX

49

e2H1/7MOc/1bZ4FvXgARlex2rkgSOKaB6HE=

50

MetaDefender Distributed Cluster Control
Center

Ignition file

O o

The ignition file is required only for a clean installation.
The following fields are essential for the ignition file:

e iddentity.host

e iddentity.port

e identity.connection_key
e database.host

e database.port

e database.user

e database.password

e secure.encryption_key

To install MetaDefender Distributed Cluster Control (MDDC] Center server, ignition file in YML format
is required at the following location:

o Windows: C:\opswat\mddc_control_center.yml

e Linux: /etc/opswat/mddc_control_center.yml

The ignition file includes fields:

51

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#ignition-file

Key Value

path type Accepted values Required Description

identit String Required |IP address of the server

y.host where MDDC Identity Service
server locates.

identit String Required Port of MDDC Identity Service

y.port server is listening for
connections from clients.

identit String A string from 4 to 64 Required The access key required to

y.conne character long connect to the MDDC Identity

ction_k containing digits from Service server, ensuring it

ey 0 to 9 and characters matches the value used by

from a/A to z/Z the server.

databas String Required IP address / domain name of

e.host the server where PostgreSQL
server locates.

databas Number Required Port of PostgreSQL server is

e.port listening for connections
from clients.

databas String Required PostgreSQL server's user.

e.user
SUPERUSER privilege is
required to setup the server's
database and extensions for
the first time.

databas String Required PostgreSQL server's user

e.passw credentials.

ord

secure. String A 32-character plain Required The encryption key is used to

encrypt text composed of encrypt the sensitive data in

ion_key characters 'a'-'z' and the database.

digits '0'-'9".

rest.p Number Optional The port where the server

ort resides on. Default value is
8892

rest.lo String Optional Location where logs are

g_path

52

written.

Key Value
path type

Accepted values

Required

Description

rest.lo String
g_level

log.str String
eams[@]

.log_ty

pe

log.str String
eams[@]

.log_le

vel

AT Optional

debug
info
warning

error

file Optiona

syslog

A Optional

debug
info
warning

error

53

Level of log message.

Type of log device.

Level of log message.

Key Value

path type Accepted values Required Description

log.str String If Optional Location where logs are
eams[@] log.streams[@].log_ written.

.log_pa type is "file" then

th log.streams[@].log_

path is the pathto a
file on file system
where logs are written.

If
log.streams[@].log_
type is "syslog" then

e log.streams[@]
.log_path can
be
[tep/udp]://ho
st:port where
host:port is the
host and port to
a remote syslog
server that
supports TCP or
UDP protocol.

e log.streams[@]
.log_path can
be "local" to
write log to local
syslog server
[Linux only].

Avoid using the loopback IP address (such as localhost or 127.0.0.1] for key
identity.host .

It may prevent MDDC API Gateway from successfully establishing a connection to MDDC
Identity Service.

Configuration file

After successfully installing, MDDC Control Center generates a configuration file with changeable
settings at the following location:

54

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#configuration-file

o Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Control
Center\mddc_control_center.yml

e Linux: /etc/mddc-control-center/mddc_control_center.yml

" Info

The service must be restarted to take the new configurations into effect.

Sample

database.host, database.port, database.user, and database.password should be
updated with the appropriate values of your Postgres host/IP, port, username, and password.

identity.host should be updated with the appropriate host or IP of your MDDC Identity
Service.

yaml
database:
host: "your_postgres_host_ip"
port: 5432

user: "your_postgres_username”
password: "your_postgres_admin_password"

identity:
host: "your_mddc_identity_service_host_ip"
port: 8891
connection_key: "1234abcd"

secure:

encryption_key: "12345678123456781234567812345678" # [a-z6-
91{32}

55

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#sample

Container-Based Setup

Before running the setup, please check (System Requirements]) to install all required
dependencies of MetaDefender Distributed Cluster (MDDC]).

Setup order requirement

Please follow the installation order to complete the system setup properly.

56

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#setup-order-requirement
https://www.opswat.com/-https://app.developerhub.io/metadefender-distributed-cluster/v2.2.0/installation/mddc-system-requirements

Order Service

Notes

1 Redis, RabbitMQ, PostgreSQL and

MDDC Identity Service

2 MDDC Control Center
3 MDDC File Storage
4 MDDC Worker for MDDC API

Gateway and MDDC Worker for
MetaDefender Core

Image name and version

Could be setup in parallel in any order
among them.

Make sure they are all fully functional
and accessible before proceeding to the
next setup order #2.

Ensure it's able to connect to those
services in #1

Make sure it is fully functional and
accessible.

Ensure they're able to connect to MDDC
Control Center

Make sure it is fully functional and
accessible.

Could be setup in parallel in any order
among them.

Ensure they're able to connect to MDDC
Control Center

Make sure they are all fully functional
and accessible.

All the images can be found at OPSWAT Docker Hub with the following information:

o Info

version is the currently release version.

MDDC Identity Service

Docker image bash

57

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#image-name-and-version

opswat/metadefender-distributed-cluster:identity-service-
<version>-debian-12

MDDC File Storage

Docker image bash

opswat/metadefender-distributed-cluster:file-storage-
<version>-debian-12

MDDC Control Center

Docker image bash

opswat/metadefender-distributed-cluster:control-center-
<version>-debian-12

MDDC Worker for MDDC API Gateway

Docker image bash

opswat/metadefender-distributed-cluster:worker-api-gateway-
<version>-debian-12

MDDC Worker for MetaDefender Core

Docker image bash

opswat/metadefender-distributed-cluster:worker-core-<version>-
debian-12

Environment variables

1. MDDC Identity Service

58

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#environment-variables
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#1-mddc-identity-service

Environment Variable Necessity Description
MDDC_IDENTITY_SERVICE_DB_HOST Required Provide the database host for
MDDC Identity Service
MDDC_IDENTITY_SERVICE_DB_PORT Optional Provide the database port for
MDDC Identity Service Default:
5432
MDDC_IDENTITY_SERVICE_DB_USER Required Provide the database user for
MDDC Identity Service
MDDC_IDENTITY_SERVICE_DB_PASSWORD Required Provide the database

59

password for MDDC Identity
Service

Environment Variable

Necessity

Description

MDDC_USER

60

Required

Define the information to
initiate the administrator
account. This account is to
automatically do the following

tasks:

Add Redis to MDDC
Control Center if
specified.

Add RabbitMQ to MDDC
Control Center if
specified.

Add Data Lake to MDDC
Control Center if
specified.

Add Data Warehouse to
MDDC Control Center if
specified.

Add MDDC File Storage
to MDDC Control Center
if specified.

Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC
Worker.

Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Environment Variable

Necessity

Description

MDDC_PASSWORD

61

Required

Define the information to
initiate the administrator
account. This account is to
automatically do the following

tasks:

Add Redis to MDDC
Control Center if
specified.

Add RabbitMQ to MDDC
Control Center if
specified.

Add Data Lake to MDDC
Control Center if
specified.

Add Data Warehouse to
MDDC Control Center if
specified.

Add MDDC File Storage
to MDDC Control Center
if specified.

Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC
Worker.

Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Environment Variable

Necessity

Description

MDDC_EMAIL

62

Required

Define the information to
initiate the administrator
account. This account is to
automatically do the following

tasks:

Add Redis to MDDC
Control Center if
specified.

Add RabbitMQ to MDDC
Control Center if
specified.

Add Data Lake to MDDC
Control Center if
specified.

Add Data Warehouse to
MDDC Control Center if
specified.

Add MDDC File Storage
to MDDC Control Center
if specified.

Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC
Worker.

Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Environment Variable

Necessity

Description

MDDC_APIKEY

MDDC_IDENTITY_SERVICE_CONNECTION_KEY

Optional

Required

Define the information to
initiate the administrator
account. This account is to
automatically do the following
tasks:

+ Add Redis to MDDC
Control Center if
specified.

+ Add RabbitMQ to MDDC
Control Center if
specified.

« Add Data Lake to MDDC
Control Center if
specified.

« Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage
to MDDC Control Center
if specified.

+ Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC
Worker.

» Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Define the connection key in
order to register to Control
Center. Must be 4 to 64
characters long, using only
letters and digits [0-9, a-z, A-
Z].

Environment Variable Necessity Description

MDDC_IDENTITY_SERVICE_PORT Optional Define the expose port for
MDDC Identity Service Default:
8891

LOG_LEVEL Optional Define the log level. Default
value: info

Accepted values:
info/ debug/ error/warning

Start MDDC Identity Service container with docker run:

bash

docker run -d --name mddc-identity-service \
-e MDDC_IDENTITY_SERVICE_DB_HOST=<your_postgres_host>

-e MDDC_IDENTITY_SERVICE_DB_USER=<your_postgres_user> \

-e MDDC_IDENTITY_SERVICE_DB_PASSWORD=
<your_postgres_password> \

-e MDDC_IDENTITY_SERVICE_CONNECTION_KEY=
<your_connection_key> \

-e MDDC_USER=<your_mddc_admin_user> \

-e MDDC_PASSWORD=<your_mddc_admin_password> \

-e MDDC_EMAIL=<your_mddc_admin_email> \

-p 8891:8891 opswat/metadefender-distributed-
cluster:identity-service-<version>-debian-12

2. MDDC File Storage

64

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#2-mddc-file-storage

Environment Variable

Necessity

Description

MDDC_FILE_STORAGE_CONNECTION_KEY

MDDC_FILE_STORAGE_PORT

MDDC_FILE_STORAGE_HOST

LOG_LEVEL

MDDC_CONTROL _CENTER_HOST

MDDC_CONTROL _CENTER_PORT

Required

Optional

Optional

Optional

Required

Optional

65

Define the connection key in order
to register to MDDC Control Center.
Must be 4 to 64 characters long,
using only letters and digits [0-9,
a-z, A-Z).

Define the expose port for MDDC
File Storage. Default is 8890.

Define the MDDC File Storage's
host address. If it's not specified,
it will get the container's internal
IP address.

Define the log level. Default value:
info.

Accepted values:
info/ debug/error/warning.

Provide the MDDC Control Center's
host address.

Provide the MDDC Control Center's
port. Default is 8892.

Environment Variable

Necessity

Description

MDDC_USER

Required

66

Define the information to initiate
the administrator account. This
account is to automatically do the
following tasks:

+ Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC
Control Center if specified.

» Add Data Lake to MDDC
Control Center if specified.

» Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage to
MDDC Control Center if
specified.

o Add MDDC Worker to MDDC
Control Center, upload MDDC
API Gateway installer to
MDDC Control Center, and
deploy MDDC API Gateway to
MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer
to MDDC Control Center, and
deploy MetaDefender Core to
MDDC Worker.

Environment Variable

Necessity

Description

MDDC_PASSWORD

Required

67

Define the information to initiate
the administrator account. This
account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC
Control Center if specified.

» Add Data Lake to MDDC
Control Center if specified.

» Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage to
MDDC Control Center if
specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC
API Gateway installer to
MDDC Control Center, and
deploy MDDC API Gateway to
MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer
to MDDC Control Center, and
deploy MetaDefender Core to
MDDC Worker.

Environment Variable Necessity Description

MDDC_APIKEY Optional Define the information to initiate
the administrator account. This
account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC
Control Center if specified.

» Add Data Lake to MDDC
Control Center if specified.

» Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage to
MDDC Control Center if
specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC
API Gateway installer to
MDDC Control Center, and
deploy MDDC API Gateway to
MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer
to MDDC Control Center, and
deploy MetaDefender Core to
MDDC Worker.

O o

Persistent storage is located at /opt/opswat/mddc-file-storage. If end-users require data
to be retained across container lifecycles, they must mount a volume to this path with 777
permissions to ensure full read/write access for all processes.

Start MDDC File Storage container with docker run.

bash

68

docker run -d --name mddc-file-storage \
-e MDDC_FILE_STORAGE_CONNECTION_KEY=

<your_connection_key> \

-e MDDC_FILE_STORAGE_PORT=8890 \

-e MDDC_CONTROL_CENTER_HOST=<control-center_host_address> \

-e MDDC_USER=<your_mddc_admin_user> \

-e MDDC_PASSWORD=<your_mddc_admin_password> \

-p 8890:8890 opswat/metadefender-distributed-cluster:file-
storage-<version>-debian-12

3. MDDC Control Center

69

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#3-mddc-control-center

Environment Variable

Necessity

Description

MDDC_LAKE_DB_HOST

MDDC_LAKE_DB_PORT

MDDC_LAKE_DB_USER

MDDC_LAKE _DB_PASSWORD

MDDC_WAREHOUSE_DB_HOST

MDDC_WAREHOUSE_DB_PORT

MDDC_WAREHOUSE_DB_USER

Optional

Optional

Optional

Optional

Optional

Optional

Optional

70

Provide the database host for
Data Lake. In case that the
end-user does not have the
Data Lake, it's required to
provide this variable to
automate the database
preparation.

Provide the database port for
Data Lake. Default is 5432.

Provide the database user for
Data Lake. In case that the
end-user does not have the
Data Lake, it's required to
provide this variable to
automate the database
preparation.

Provide the database
password for Data Lake. In
case that the end-user does
not have the Data Lake, it's
required to provide this
variable to automate the
database preparation.

Provide the database host for
Data Warehouse. In case that
the end-user does not have
the Data Warehouse, it's
required to provide this
variable to automate the
database preparation.

Provide the database port for
Data Warehouse. Default is
5432.

Provide the database user for
Data Warehouse. In case that
the end-user does not have
the Data Warehouse, it's
required to provide this
variable to automate the
database preparation.

Environment Variable Necessity Description

MDDC_WAREHOUSE _DB_PASSWORD Optional Provide the database
password for Data Warehouse.
In case that the end-user does
not have the Data Warehouse,
it's required to provide this
variable to automate the
database preparation.

MDDC_CACHE_HOST Optional Provide the caching host
[Redis).

MDDC_CACHE_PORT Optional Provide the caching port
[Redis).

MDDC_CACHE_USER Optional Provide the caching username

[Redis]. If the end-user does
not provide it, Redis will be
added without authentication.

MDDC_CACHE _PASSWORD Optional Provide the caching password
[Redis). If the end-user does
not provide it, Redis will be
added without authentication.

Do not support double quotes
["])and backslash [\]in the

password.
MDDC_BROKER_HOST Optional Provide the broker host
[RabbitMQ).
MDDC_BROKER_PORT Optional Provide the broker port
(RabbitMQ).
MDDC_BROKER_USER Optional Provide the broker username
(RabbitMQ).
MDDC_BROKER_PASSWORD Optional Provide the broker password
[RabbitMQ).
MDDC_CONTROL_CENTER_DB_HOST Required Provide the database host for

MDDC Control Center.

MDDC_CONTROL _CENTER_DB_PORT Optional Provide the database port for
MDDC Control Center. Default is
5432.

71

Environment Variable Necessity Description

MDDC_CONTROL_CENTER_DB_USER Required Provide the database
username for MDDC Control
Center.

MDDC_CONTROL_CENTER_DB_PASSWORD Required Provide the database
password for MDDC Control
Center.

MDDC_USER Required Provide the administrator

account that is defined in
MDDC Identity Service. This
account is to automatically do
the following tasks:

» Add Redis to MDDC
Control Center if
specified.

» Add RabbitMQ to MDDC
Control Center if
specified.

» Add Data Lake to MDDC
Control Center if
specified.

« Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage
to MDDC Control Center if
specified.

» Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC Worker.

+ Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Environment Variable

Necessity

Description

MDDC_PASSWORD

73

Required

Provide the administrator
account that is defined in
MDDC Identity Service. This
account is to automatically do
the following tasks:

« Add Redis to MDDC
Control Center if
specified.

+ Add RabbitMQ to MDDC
Control Center if
specified.

« Add Data Lake to MDDC
Control Center if
specified.

« Add Data Warehouse to
MDDC Control Center if
specified.

» Add MDDC File Storage
to MDDC Control Center if
specified.

+ Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC Worker.

» Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Environment Variable

Necessity

Description

MDDC_APIKEY

MDDC_IDENTITY_SERVICE_HOST

MDDC_IDENTITY_SERVICE_PORT

74

Optional

Required

Optional

Provide the administrator
account that is defined in
MDDC Identity Service. This
account is to automatically do
the following tasks:

¢ Add Redis to MDDC
Control Center if
specified.

+ Add RabbitMQ to MDDC
Control Center if
specified.

« Add Data Lake to MDDC
Control Center if
specified.

» Add Data Warehouse to
MDDC Control Center if
specified.

+ Add MDDC File Storage
to MDDC Control Center if
specified.

+ Add MDDC Worker to
MDDC Control Center,
upload MDDC API
Gateway installer to
MDDC Control Center,
and deploy MDDC API
Gateway to MDDC Worker.

» Add MDDC Worker to
MDDC Control Center,
upload MetaDefender
Core installer to MDDC
Control Center, and
deploy MetaDefender
Core to MDDC Worker.

Provide the MDDC Identity
Service host in order to add it
to MDDC Control Center.

Provide the IMDDC dentity
Service port in order to add it to
MDDC Control Center. Default is
8891.

Environment Variable Necessity Description

MDDC_IDENTITY_SERVICE_CONNECTION_KEY Required Provide the MDDC Identity
Service connection key in order
to add it to MDDC Control
Center. Must be 4 to 64
characters long, using only
letters and digits [0-9, a-z, A-
Z).

MDDC_CONTROL _CENTER_ENCRYPTION_KEY Required Define the encryption key for
communication between MDDC
Control Center and the
services. Must be 32
characters long and contain
only lowercase letters [a-2z] and
digits (0-9).

MDDC_CERT_PATH Optional Provide the directory path that
contains the certificate and
private key in order to enable
https Note: when provide this
variable, it's supposed to
mount this path to /certs/
as volume For example: --

volume /your-path:/certs

Note: In cases where SSL fails
to enable due to the File
Storage service not being
ready, the end-user can either
restart the MDDC Control Center
or manually activate SSL as a
workaround.

LOG_LEVEL Optional Define the log level. Default
value: info.

Accepted values:
info/ debug/error/warning

Start MDDC Control Center container with Docker run.

bash

75

docker run -d --name mddc-control-center \
-e MDDC_CONTROL_CENTER_DB_HOST=<your_postgre_host> \

-e MDDC_CONTROL_CENTER_DB_USER=<your_postgre_user> \

-e MDDC_CONTROL_CENTER_DB_PASSWORD=<your_postgre_password> \

-e MDDC_IDENTITY_SERVICE_HOST=
<your_identity_service_host_address> \

-e MDDC_USER=<your_mddc_admin_user> \

-e MDDC_PASSWORD=<your_mddc_admin_password> \

-e MDDC_IDENTITY_SERVICE_CONNECTION_KEY=
<your_connection_key> \

-e MDDC_CONTROL_CENTER_ENCRYPTION_KEY=<your_encryption_key>

-e MDDC_CERT_PATH=/certs \
-v /new-certificates:/certs \

-p 8892:8892 opswat/metadefender-distributed-
cluster:control-center-<version>-debian-12

4. MDDC Worker for APl Gateway

76

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#4-mddc-worker-for-api-gateway

Environment Variable Necessity Description

MDDC_WORKER_CONNECTION_KEY Required Define the connection key in order to
register to MDDC Control Center. Must
be 4 to 64 characters long, using only
letters and digits (0-9, a-z, A-Z].

MDDC_WORKER_PORT Optional Define the expose worker's port.
Default is 8893.

MDDC_WORKER_HOST Optional Define the worker's host address. If
it's not specified, it will get the
container's internal IP address.

MDDC_CONTROL_CENTER_HOST Required Provide the MDDC Control Center's host
address.

MDDC_CONTROL_CENTER_PORT Optional Provide the MDDC Control Center's port

7

Default is 8892.

Environment Variable

Necessity

Description

MDDC_USER

Required

78

Provide the administrator account that
is defined in MDDC Identity Service. It
can be optional if the end-user
provides the MDDC_APIKEY. This
account is to automatically do the
following tasks:

* Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

» Add Data Lake to MDDC Control
Center if specified.

» Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

Environment Variable

Necessity

Description

MDDC_PASSWORD

Required

79

Provide the administrator account that
is defined in MDDC Identity Service. It
can be optional if the end-user
provides the MDDC_APIKEY. This
account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

o Add Data Lake to MDDC Control
Center if specified.

» Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

Environment Variable Necessity Description

MDDC_APIKEY Optional Provide the administrator account that
is defined in MDDC Identity Service.
This account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

» Add Data Lake to MDDC Control
Center if specified.

o Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

MDDC_API_GATEWAY_PORT Optional Define the expose port to scan files via
MDDC API Gateway. Default is 8899.

LOG_LEVEL Optional Define the log level. Default value:

info.

Accepted values:

info/ debug/ error/warning.

o Info

If multiple MDDC API Gateway containers are deployed on the same host, make sure their
ports are configured to avoid conflicts.

80

Start MDDC Worker for MDDC API Gateway container with Docker run.

bash

docker run -d --name mddc-worker-api-gateway \
-e MDDC_WORKER_CONNECTION_KEY=<your_connection_key> \

-e MDDC_WORKER_HOST=<your_worker_host_address> \

-e MDDC_CONTROL_CENTER_HOST=
<your_control_center_host_address> \

-e MDDC_USER=<your_mddc_admin_user> \

-e MDDC_PASSWORD=<your_mddc_admin_password> \

-e MDDC_API_GATEWAY_PORT=8899 \

-p 8893:8893 -p 8899:8899 opswat/metadefender-distributed-
cluster:worker-api-gateway-<version>-debian-12

5. MDDC Worker for Core

81

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#5-mddc-worker-for-core

Environment Variable Necessity Description

MDDC_WORKER_CONNECTION_KEY Required Define the connection key in order to
register to MDDC Control Center. Must
be 4 to 64 characters long, using only
letters and digits (0-9, a-z, A-Z].

MDDC_WORKER_PORT Optional Define the expose worker's port.
Default is 8893.

MDDC_WORKER_HOST Optional Define the worker's host address. If
it's not specified, it will get the
container's internal IP address.

MDDC_CONTROL_CENTER_HOST Required Provide the MDDC Control Center's host
address.

MDDC_CONTROL_CENTER_PORT Optional Provide the MDDC Control Center's

82

port. Default is 8892.

Environment Variable

Necessity

Description

MDDC_USER

Required

83

Provide the administrator account that
is defined in MDDC Identity Service. It
can be optional if the end-user
provides the MDDC_APIKEY. This
account is to automatically do the
following tasks:

* Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

o Add Data Lake to MDDC Control
Center if specified.

» Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

Environment Variable

Necessity

Description

MDDC_PASSWORD

Required

84

Provide the administrator account that
is defined in MDDC Identity Service. It
can be optional if the end-user
provides the MDDC_APIKEY. This
account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

» Add Data Lake to MDDC Control
Center if specified.

» Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

Environment Variable Necessity Description

MDDC_APIKEY Optional Provide the administrator account that
is defined in MDDC Identity Service.
This account is to automatically do the
following tasks:

» Add Redis to MDDC Control
Center if specified.

» Add RabbitMQ to MDDC Control
Center if specified.

» Add Data Lake to MDDC Control
Center if specified.

o Add Data Warehouse to MDDC
Control Center if specified.

» Add MDDC File Storage to MDDC
Control Center if specified.

» Add MDDC Worker to MDDC
Control Center, upload MDDC API
Gateway installer to MDDC
Control Center, and deploy MDDC
API Gateway to MDDC Worker.

» Add MDDC Worker to MDDC
Control Center, upload
MetaDefender Core installer to
MDDC Control Center, and deploy
MetaDefender Core to MDDC
Worker.

LOG_LEVEL Optional Define the log level. Default value:

info.

Accepted values:

info/ debug/ error/warning.

MDDC_LICENSE_KEY Optional Provide the license key to activate
MetaDefender Core.

MDDC_LICENSE_DESCRIPTION Optional Define description of the license key.

o Info

If multiple MetaDefender Core containers are deployed on the same host, make sure their
ports and hosts are configured to avoid conflicts.

85

Start MDDC Worker for MetaDefender Core container with Docker run.

bash

docker run -d --name mddc-worker-core \
-e MDDC_WORKER_CONNECTION_KEY=<your_connection_key> \

-e MDDC_WORKER_HOST=<your_core_host_address> \

-e MDDC_CONTROL_CENTER_HOST=
<your_control_center_host_address> \

-e MDDC_USER=<your_mddc_admin_user> \

-e MDDC_PASSWORD=>your_mddc_admin_password> \

-p 8893:8893 opswat/metadefender-distributed-cluster:worker-
core-<version>-debian-12

Start MetaDefender Distributed Cluster with Docker
Compose

1. Create a local file named docker-compose.yaml and copy the following content to this file:

yamlyaml

86

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#start-metadefender-distributed-cluster-with-docker-compose

services:
redis:
image: redis:7.0.5
container_name: redis
ports:
"6379:6379"
networks:
- mddc
rabbitmq:
image: rabbitmq:3.13.0
container_name: rabbitmq
restart: always
healthcheck:
test: ["CMD", "rabbitmg-diagnostics"”,
interval: 10s
timeout: 10s
retries: 30
start_period: 20s
environment:
- RABBITMQ_DEFAULT_USER=admin
- RABBITMQ_DEFAULT_PASS=admin
ports:
"5672:5672"
"15672:15672"
networks:
- mddc
postgres:
image: postgres:14.17
container_name: postgres
ports:
- 5432:5432
networks:
- mddc
environment:
- POSTGRES_USER=admin
- POSTGRES_PASSWORD=admin
healthcheck:
test: ["CMD", "pg_isready", "-U", "admin", "-d",
"postgres"]
interval: 10s
timeout: 10s
retries: 30
identity-service:
env_file:
- .env.example
image: opswat/metadefender-distributed-cluster:identity-
service-2.0.0-debian-12
container_name: identity-service
ports:

_q“, “ping“]

87

- 8891:8891
networks:
- mddc
deploy:
restart_policy:
condition: on-failure
depends_on:
postgres:
condition: service_healthy
restart: true
file-storage:
env_file:
- .env.example
image: opswat/metadefender-distributed-cluster:file-
storage-2.0.0-debian-12
container_name: file-storage
ports:
- 8890:8890
networks:
- mddc
deploy:
restart_policy:
condition: on-failure
depends_on:
postgres:
condition: service_healthy
restart: true
control-center:
env_file:
- .env.example
image: opswat/metadefender-distributed-cluster:control-
center-2.0.0-debian-12
container_name: control-center
ports:
- 8892:8892
networks:
- mddc
deploy:
restart_policy:
condition: on-failure
healthcheck:
test: ["CMD", "true"]
interval: 60s
start_period: 90s
start_interval: 60s
depends_on:
- identity-service
- redis
- rabbitmq
- file-storage

88

worker-api-gateway:
env_file:
- .env.example
image: opswat/metadefender-distributed-cluster:worker-api-
gateway-2.0.0-debian-12
container_name: worker-api-gateway
ports:
"8893"
- 7777:7777
networks:
- mddc
deploy:
restart_policy:
condition: on-failure
healthcheck:
test: ["CMD", "true"]
interval: 5s
timeout: 2s
start_period: 30s
depends_on:
control-center:
condition: service_healthy
worker-core:
env_file:
- .env.example
image: opswat/metadefender-distributed-cluster:worker-
core-2.0.0-debian-12
container_name: worker-core
ports:
"8008"
networks:
- mddc
deploy:
restart_policy:
condition: on-failure
depends_on:
control-center:
condition: service_healthy
worker-api-gateway:
condition: service_healthy

networks:
mddc:
driver: bridge
ipam:
config:
- subnet: 10.0.0.0/24
gateway: 10.0.0.1

89

##Ensure to replace with your specific image tag

2. Prepare an environment variable file named .env.example and provide with your own
values

3. Run the application with the command:

yaml

docker compose up -d

Known limitation
+ When the host experiences resource limitations or degraded performance, some

containers may fail to start properly. In such cases, restarting the container is
recommended to restore normal operation.

90

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#known-limitation

Recommended Setup

Although it is possible to install Redis Caching Server, RabbitMQ Message Broker and Postgres
Database Server and MetaDefender Distributed Cluster [MDDC] File Storage on the same machine,
they should be installed separately on various machines to optimize their performance.

Redis Caching Server

The caching server consumes a large amount of memory while operating; hence, a machine with
ample and high-speed memory is best suited to this component.

RabbitMQ Message Broker

The broker is one of keys that powers MetaDefender Distributed Cluster architecture, it ensures
tasks are delivered to MetaDefender Core instances in an equitable manner, delivering a "broken”
task to a healthy MetaDefender Core instance and spreading tasks to new instances if more
MetaDefender Core instances are added to system. For that reason, the broker should be hosted
on a separate machine.

Postgres Database Server

MetaDefender Distributed Cluster database is split into three main clusters.
Data Lake stores scan results and other details related to requests such data_id, hashes, etc.

Since Data Lake is shared among MetaDefender Core and MDDC API Gateway instances, it should
be hosted on a large-volume and high-speed disk. The network is also essential to Data Lake; a
high-speed network is necessary.

Data Warehouse, which prepares materials for building executive reports, uses a single
connection to Data Lake and collects data periodically.

Since executive reports may be stored for a long period of time for MDDC Control Center to access,
Data warehouse should be hosted on a large-volume machine.

Control Center-related database, storing all user details, configurations and other settings.
MDDC Control Center database can be hosted on the same machine as Control Center.

MetaDefender Distributed Cluster File Storage

MDDC File Storage is shared among MetaDefender Core and MDDC API Gateway instances. The
server consumes a large amount of disk to store the submitted files from instances. Since all file-
related traffic goes through MDDC File Storage, a high speed network is essential. Rocky 9.0 is
recommended to host MDDC File Storage.

MetaDefender Distributed Cluster API Gateway

91

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#redis-caching-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#rabbitmq-message-broker
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#postgres-database-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-distributed-cluster-file-storage
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-distributed-cluster-api-gateway

Due to differences in Operating System and Nginx support on Windows and Linux, MDDC API
Gateway should be hosted on a Linux machine running Rocky 9.0 for high throughput of file
scan submissions.

MetaDefender Core

One of strong aspects of MetaDefender Distributed Cluster is that it can support a hybrid
architecture in which MDDC APl Gateway and MDDC File Storage instances may be hosted on
Linux while MetaDefender Core instances can be on Windows. Therefore, based on customer
requirements, MetaDefender Core instances can be hosted on Windows or Linux machines.

Itis recommended to setup all MetaDefender Core instances on Windows or on Linux.

Mixed OS run is unsupported.

92

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-core

License activation

MetaDefender Distributed Cluster supports two types of license activations:

e Online Activation.

o Offline Activation.

93

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation

Online Activation

MetaDefender Distributed Cluster (MDDC) supports seamless license activation for every deployed
MetaDefender Core instance. The license key must be provided to the MDDC Control Center and
will be activated on each individual MetaDefender Core instance either automatically during
deployment or manually at a later time. If necessary, multiple license keys may also be supplied.

Adding License

1. Sign in to MetaDefender Distributed Cluster Control Center console.
2. Goto Inventory > Licenses and select Add license.

3. Input your license key and click Add.

inventory / Licenses + Addliconse

Created At =

Jun 16,2025 at 436:22PM

License Activation

Automatic activation during deployment

During the deployment process of MetaDefender Core instances, you can select a license key to
automatically activate on the instances being deployed.

ooy workrs 10) I ® =] - |

Advanced Settings

GUO RMO DK@ Host Port

4 e8GR mASGE te2eeion eesa

Activation after deployment

94

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#adding-license
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-activation

After deploying MetaDefender Core instances, follow these steps to activate your license:

. Sign in to MDDC Control Center console.
. From the left side bar, go to Inventory > Licenses.

. From the list of available licenses, choose the key you wish to use for activation.

A w0 N

. Click Activate to apply the license key to the appropriate instance(s].

Licenso Koy Expirod Date Number Of Activated Workers Description Created At =

t >
Jun'16, 2026 2t 436:22PM

0 Info

Once Activate is clicked, the license key will be applied to all unlicensed MetaDefender
Core instances. Ensure that your license quota is sufficient to cover all unlicensed

instances.

You can view the number of activated instances and available slots by selecting Details on
the license key. At the moment, Details can only be viewed after activation is successful.

License Deactivation

Follow these steps to deactivate your license:

1. Sign in to MDDC Control Center console.
2. From the left side bar, select Inventory > Licenses.
3. From the list of available licenses, choose the key you wish to use for deactivation.

4. Click Deactivate to remove the license from all MetaDefender Core instances currently
activated with the license key.

Inventory / Licenses + Addlconse

Licenso Koy Expirod Date Number Of Activated Workers Description Creatod At =

Jun 16, 2026 2t 436:22PM
@
2 e
® Delete
© Actiate

© pesctivate

95

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-deactivation

o Info

Once deactivated, the license slots will become available and can be reassigned when
necessary.

When MetaDefender Core instances are undeployed through MDDC Control Center, their
associated licenses are automatically deactivated.

96

Offline Activation

Collect Deployment IDs

1. Sign in to MetaDefender Distributed Cluster [MDDC] Control Center console.

2. Goto Inventory > Licenses and select Offline License tab.

3. Select Deployment IDs of MetaDefender Core instances you prefer to activate.

4. Press Export atthe top right corner and save the exported file to your location of choice.

OPSWAT.
MetaDefender
Distributed Cluster

88 Dashboard

D History

@8 Workflow Management
2, User Management

@ Inventory

Services
Workers
Packages
Modules
Licenses

Certificates

0 Info

Licenses

Online License

a2
a
[m]
[m]

Deployment ID
MSCLAUbyOEMkrAssfB4oFcXFip.
MSCLonRmMF1y2zzK2MEN10XCSy.
MSCLIthSL6Z44YJkpXhx5pndg...
MSCLyJBgSIRFgIuahoKnSOXypz...

MSCLTS1ukfczUSTBtxk0bSo5giU

Offline License

Worker

tuong-122

tuong-142

R-88

D202

R-160

Status

Inactivated

Inactivated

Inactivated

Inactivated

Inactivated

2 LOCAL/admin o

Expired Date +

MetaDefender Distributed Cluster Control Center only displays the Deployment IDs of

MetaDefender Core instances that have not been activated thus far.

O o

The exported file includes a list of chosen Deployment IDs that will be used for activation in

the subsequent stage.

97

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#collect-deployment-ids

0 Info

To collect the Deployment ID of a single MetaDefender Core instance, please:

1. Hover your mouse over the preferred Deployment ID to display the copy button.

2. Press the copy button.

3. Retain the copied Deployment ID and proceed to the next stage.

OPSWAT.
MetaDefender
Distributed Cluster

99 Dashboard

® History

3 Workflow Management
&, User Management

& Inventory

Services
Workers

Packages

Licenses

Online License Offline License

[m]
[m]
[m]
[m]
[m]
[m]

Deployment ID Worker

MSCLAUbYOEMKrAssfB4oFc... tuong-122

MSCLJtbSLEZ44JkpXhx. R-88
Copy Deployement ID
MSCLonRmFly2zz} -1

MSCLyJBgsiRFgluahoKnSlx... D-202

MSCLT51ukfczUS16txkOb305. R-160

2, LOCAL/admin a

Status Expired Date +
Inactivated
Inactivated
Inactivated
Inactivated

Inactivated

Activate license with Deployment ID

1. Sign in to MyOPSWAT with your account.

2. Navigate to License Management on the left side panel.

3. Click Activate License.

4. Fill out all necessary information, including your Activation Key, Deployment ID and
selection of the Package you require.

5. Click Activate.

Activate License

Product
MetaDefender Core

jcense Kev'

Deployment 1D+

Requested Number Of Agents

1

6. Click Download and store the license file to your secure location.

98

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-license-with-deployment-id
https://my.opswat.com/home

Actating the cense was successiul. X

Activate License

License fil is now available to downioad

Cancel

O o

The license file is associated with one unique Deployment ID. The users must carry out steps
3 to 6 for every deployment ID on their list.

Activate MetaDefender Core instances with license files

1. Sign in to MDDC Control Center console.
2. Goto Inventory > Licenses and select 0ffline License tab.

3. Click Activate.

OPSWAT. 2 LOCAL/admin o
MetaDefender
Distributed Cluster
Licenses @ Retresn -
38 Dashboard > Online License Offline License
€D History >
[] DeploymentID Worker Status Expired Date +
0% Workflow Management >
[J MSCLAUbyOEMKkrAssfBdoFc... tuong-122 Inactivated
8, User Management
[0 MSCLJthSL6Z44YJkpXhx... [f) R-88 Inactivated
@ Inventory ~ Copy Deployement ID
[J MSCLonRmFly2zz A 142 Inactivated
Services
[] MSCLyJBgsIRFgluahoKnS0x... D-202 Inactivated
Workers
[J MSCLTSlukfczUSIBtrk0bS05... R-160 Inactivated
Packages

4. Drop the license files into the dash area for submission.

99

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-metadefender-core-instances-with-license-files

Activate Offline License »

Step1

Copy your preferred Deployment 1D.

Step 2
Activate and download your activation file at

My OPSWAT Central Management ()

Step 3

Upload your activation file.

AN

Orap your activation Yaml files here, ar browse

5. Click Confirm to complete.

6. MDDC Control Center activates MetaDefender Core instances associated with the provided
license files and displays their activation status.

OPSWAT. o LocAUadmin QU
MetaDefender :
Distributed Cluster
Licenses C Refresh
88 Dashboard
aehtoar 4 OnlineLicense ~ Offline License
D History >
Deployment ID Worker Status Expired Date +
©8 Workflow Management >
[MSCLAJ2i8UIMOCY28KmTZxwmdRZm.. tuong-142 Activated 01/03/2026
2, User Management
[[] MSCL2PGI3BTrieFTaBbedfai7l BEZSNW... tuong-122 Inactivated
& Inventory v
Services [MSCLyJBgsIRFgluahoknSOxypZvahg... D-202 Activated 01/03/2026
Workers [MSCLUAUBRSWUDYZIMWIKERTGAVZR .. R-160 Inactivated
Packages [MSCLNroFSDYUVUYKkEaas54AYUMSC... R-88 Inactivated
Modules

Licenses

7. Select an activated MetaDefender Core instance and press Details to view the license
details

OPSWAT. o

LOCAUadmin
MetaDefender -

Distributed Cluster
Licenses C Refresh

a0
h
85 Dashboard > OnlineLicense ~ Offline License
D History >
o8 vorktion . [Deployment D Worker Status Expired Date +
lorkflow Management >
N] MSCLAJ2IBUMGCY28KmTZxWmdRZm... tuong-142 Activated 01/03/2026
& User Management
o] MSCL2PGI3BTfjeFTabbedfai7LBEZSNW... tuong-122 Inactivated - @ Detail
Inventory v
© Deactivate
Services [MSClyJBgsiRFgluahoKnS0xypZvahg... D-202 Activated 01/03/2026
[MSCLUJAUBRSWUDYZIMWIKbRIGAVZR... R-160 Inactivated -
Workers i Dy 9
Packages (] MSCLNrOFSDyUVUYKkEaas54AYUmSG... R-88 Inactivated -
Modules
Licenses.

101

Module update

MetaDefender Distributed Cluster (MDDC]) introduces two modes of Module Update. To switch
between the modes, please sign in to MDDC Control Center console, navigate to Settings and
select Module Update tab.

OPSWAT.
MetaDefender
Distributed Cluster

85 Dashboard

D History
03 Workflow Management
&, User Management

@ Inventory

£ Settings

© info

Settings

&) =

Security Module Update

Update mode

=} & 2 @

Data Retention Health Check Export About

© online

Automatically update

O offline

Online update mode is enabled by default.

Online module update

Every 4

hours -

In online update mode, MDDC Control Center will base its checks on the activated licenses to
find and download the latest engine packages fromm OPSWAT online update infrastructure,

repeating this process every four hours.

OPSWAT.
MeteDefender
Distributed Cluster

88 Dashboard N
D History >
©F Workflow Management >
2, User Management

@ Inventory v

Services
Workers
Packages
Modules
Licenses

Certificates

@ Settings

Modules

Engine Name Status

Clamav 0 Storing
Bitdefender O Storing
Varist @ Ready
Country of Origin @ Ready
Archive Compression () Downloading
Avira © Downloading
Ahnlab @ Ready
Archive Extraction @ Ready
Proactive DLP € Downloading.
DeepCOR € Downloading
ESET € Downloading
FileType @ Ready
IKARUS € Downloading
InSights Threat Intelli.. () Downloading

B3 Schedule G Refresh

Version Database Type
51432545 (® 1756338200 Anti-Malware
£3.01.297-2083 ® 799398 Anti-Malware

56622219 5202508281005 Anti-Malware

B 201431 a1 Country of Origin
®75.27557 57527557 Compression

5 415.27-231 (@ 1756377633 Anti-Malware
£13.27.24-2358 £2025.08.28.03 Anti-Malware

67527557 57527557 Archive

®3.00-4527 (§ 1755946854-fa2d Proactive DLP
®75.2-2342 @515 Deep COR

® 1420218 (@ 1756373084 Anti-Malware

57539133 57539133 Filetype Detection

® 64122193 @ 108472 Anti-Malware

® 210293 (® 1756378926 InSights Threat Intelligence

102

Platform

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

2 LoCAVadmin Q

&, UploadPackage & Update All

Last Update +
Aug 28, 2025 6:47:38 PM
Aug 28, 2025 6:47:38 PM
Aug 28, 2025 6:47:32 PM
Aug 28, 2025 6:47:30 PM
Aug 28, 2025 6:47:25 PM
Aug 28, 2025 6:47:25 PM
Aug 28, 2025 4:08:23 PM

Aug 28, 2025 4:08:22 PM

Aug 28, 2025 4:08:24 PM

https://www.opswat.com/docs/mddistributedcluster/installation/engine-package#online-module-update

All downloaded engine packages are verified and stored in MDDC File Storage for licensed

MetaDefender Core instances to pull, install, or upgrade on their end. Through this mechanism,
the instances cease to independently pull the engine packages from the update infrastructure,
conserving network bandwidth while enhancing their readiness.

Offline module update

In offline update mode, administrators must download the licensed engine packages from
MetaDefender Update Downloader and upload them manually to MDDC Control Center.

o Info

Please reference here for more details about downloading engine packages from

MetaDefender Update Downloader.

1. Sign in to MDDC Control Center console.
2. Goto Inventory > Modules.

3. Press Upload Package at the top right corner.

OPSWAT.
MetaDefender
Distributed Cluster
Modules

88 Dashboard > Engine Name Status Version
@ History > Deep COR @ Ready £ 75.2-23142
08 Workflow Management > Archive Extraction (@) Ready 5 75.2-7557
&, User Management AhnLab @ Ready (5 3.27.2.4-2358
@ Inventory v

Services

Workers

Packages

Modules

Licenses

Certificates
{8} Settings

O o

Database
[SIEH
£ 75.2-7557

() 2025.08.23.02

B3 schedule

Type

DeepCOR

Archive

Anti-Malware

L LOCAUadmin Jat

C' Refresh | ", Upload Package

Platform

Linux

Linux

Linux

Last Update +
Aug 28, 2025 70..
Aug 28, 2025 7:0..

Aug 28, 2025 7:0..

Update All is always disabled if Offline Update mode is selected in Settings > Module

Update.

4. Choose your engine package files.

103

https://www.opswat.com/docs/mddistributedcluster/installation/engine-package#offline-module-update
https://www.opswat.com/docs/mddownloader/operating/download-all-update-packages

Module Update »

Please select package [.zip] files and corresponding descriptor [.yml] files downloaded by the
Offline Downloader Utility.

@ Packagel[.zip] @ Descriptorf.yml]
No file chosen. No file chosen.
| Choose files |

Cancel

5. Click Update to submit the package files.

Module Update

Please select package [zip) files and descriptor [yml]
Offline Downloader Utility.

@ Packagel.zip] @ Descriptor[yml]
dlp_17 linux-database- 175344134 dip_17 linux-database-1753441343-17534.

@ Packagel.zip] @ Descriptor{yml]
dip 17 linux-engine-1752525756.zip dlp_17 linux-engine-1762526755-1752526.

Choose files |

coneet

o Info

Package files from various engines can be selected simultaneously.

6. Wait until engine packages are ready.

104

OPSWAT. O, LocALadmin L1

MetaDefender -
Distributed Cluster
Modules BY schedule C Refresh 1, Upload Package
38 Dashboard > Engine Name Status Version Database Type Platform LastUpdate «
D History > Proactive DLP < Storing 5 3.0.0-4527 (® 1753441231-1... Proactive DLP Linux Aug 28,2025 7:2..
©8 Workflow Management > Deep COR @ Ready 5 75.2-23142 5515 Deep COR Linux Aug 28, 2025 7:0.
&, User Management Archive Extraction () Ready 5 75.2-7557 & 75.2-7557 Archive Linux Aug 28, 2025 7:0.
B Inventory v AhnLab @ Ready (327242358 (7)2025.08.23.02 Anti-Malware Linux Aug 28,2025 T:0...
Services
Workers
Packages.
Modules
Uploading Files
Licenses
dip_17.linux-engine-1752525755.2ip
Certificates
dip_17_linux-engine-1752525755-175252631.ymi
& Settings

dip_17_linux-database-1753441343.zip

dip_17_linux-database-1753441343- 1753441466 yml

o Info

All uploaded engine packages are verified and stored in MDDC File Storage for licensed
MetaDefender Core instances to pull, install, or upgrade on their end.

7. Engine update statuses on MetaDefender Core instances can be monitored in Dashboard >
System Health > Worker Health.

OPSWAT. 2 LocAUadmin Q0
MetaDefender
Distributed Cluster

88 Dashboard v
88 Dashboar " Healthy a Healthy

System Health RabbitMQ Identity Service

System Activity
7”7

Executive Report nstance count ®
® History >

3 Workflow Management >

2, User Management Workers Health
@ Inventory > 100% 0 0
@ Settings Overall Health Unhealthy Workers Available Workers

0Cores Windows ~ 2Cores Linux 0 API Gateway Windows 1 API Gateway Linux

Name Status Health e ® ES] g ® @ Fy @ ® & g
R88 Rumning Healthy 11 ™ - - - - -) B) -) @
R60 Running Healthy 11 ™ - - - - - @ - @ . @ @

High Availability

Overview

In MetaDefender Distributed Cluster [MDDC], critical components for its continuous operation
include RabbitMQ, Redis, Postgres, and MDDC File Storage. Any disruption of these components
will lead to an interruption in the scanning processes and result in a failed verdict for the
processed files. To prevent the interruption, high-availability solutions must be implemented on
the components.

A strategy for achieving high availability is the replication and redundancy of essential
components. The key concept is that if a single component fails, the redundant system takes
over seamlessly, avoiding any interruption in service. Following are guidelines to set up the high
availability solution on individual components and apply them in MetaDefender Distributed
Cluster.

» High availability support for MDDC File Storage.

» High availability support for RabbitMQ.

* High availability support for Redis.

¢ High availability support for Data lake.

106

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/configurations?mode=print&deployment_id=latest#overview
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha

High Availability support for File Storage

Key concept
The High Availability solution for MetaDefender Distributed Cluster [MDDC] File Storage is
implemented in this manner:
o Afileis stored across multiple MDDC File Storages by MDDC API Gateway or
MetaDefender Core.

+ MDDC API Gateway or MetaDefender Core must request all MDDC File Storage instances
for a file existence or a file download.

0 Info

A minimum of three MDDC File Storage instances must be installed on separate hosts for
High Availability solution to function properly.

All MDDC File Storage instances must be of an identical version.

Setup Instructions
1. Setup MDDC File Storage instances on individual servers.
2. Sign to MDDC Control Center console with your Administrator account.
3. Navigate to Inventory > Services.
4. Expand the File Storage Service group.
5. Click Add service.

6. Enter the values for Name, Host, Port and Connection Key fields of individual MDDC File
Storage instances set up in Step 1.

7. Click the Check icon in the bottom right to complete.

2 WcaUadmin

FEO

Last Hoalthy Last Update Addedsy +

24,2025 6t 45906 PV 0124, 2028 at 45538 PM LocAUadmin

24, 2025 8t 45906 PV 90124,2028 ot 455:43PM LocAUadmin

210 Windows 24,2025 8t 45908 PM J0124,2026 ot 45546 PM LocAUadmin

pontt

BB

107

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha#key-concept
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha#setup-instructions

8. Ensure all MDDC File Storage instances are healthy and reachable by MDDC Control
Center.

o woavsdmin L

© FileStorage senvice s Healthy
Name Status Version Platform Last Hoalthy LastUpdato Addod sy +
File-Storage-1 Heatthy 210 Windaws J0124,2025 2t 5:00:22PM 124,205 3 455:38 P LocAUadmin

Fle-Storage-2 Healthy 210 Windaws 0124,2025 at 5:00:22PM 124,205 at 45543 PM LocAUadmin

File-Storage-3 Heaithy 210 Windows 124,205 at 5:00:22PM 01242025 at 45548 PM LocAUsdmin

+ Add sevice

9. Click on the gearicon in the top left of File Storage Service group to configure the
minimum and maximum replicas.

File Storage Settings.

Min replica: @

sait

e Minimum replica: The minimum number of data copies that must be written for the
operation to succeed.

e Maximum replica: The maximum of data copies stored across the system.

O o

To balance performance and high availability efficiency, the minimum and maximum
replicas should be set to the following values:

e Min replica =2

e Max replica =3

10. Click Save to complete.

High Availability support for RabbitMQ

O o

A minimum of three RabbitMQ nodes must be installed on separate hosts for High
Availability solution to function properly.

An odd number of RabbitMQ nodes is required.

All RabbitMQ nodes must be of an identical version.

RabbitMQ cluster

1. Install RabbitMQ nodes on servers.

2. Ensure each node can resolve its own hostname and those of the others.

» Start Command Prompt on Windows or Terminal on Linux, and run the following
command to get hostname.

bash

Windows
> hostname

Debian/Ubuntu or Red Hat/Rocky
$ hostname

+ In Command Prompt on Windows or Terminal on Linux of any RabbitMQ node, and run the
following command to ping to the other using its hostname.

bash

Windows
> ping <other_node_hostname>

Debian/Ubuntu or Red Hat/Rocky
$ ping <other_node_hostname>

110

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#rabbitmq-cluster

3. On each RabbitMQ nodes, open the following ports.

Default

port Process

5672 Used by MDDC Control Center, MDDC API Gateway and MetaDefender Core.

4369 Used by discovery daemon on each RabbitMQ nodes and rabbitmgctl tool.

25672 Used by each RabbitMQ nodes and rabbitmqctl tool to communicate to the
other nodes.

15672 Used by rabbitmg-management plugin.

4. Verify that the Erlang cookies of all RabbitMQ nodes are identical.

6 Info

RabbitMQ nodes and rabbitmgctl tool use a cookie to determine whether they are allowed
to communicate with each other. For two nodes to be able to communicate they must have
the same shared secret called the Erlang cookie. The cookie is a string of alphanumeric
characters up to 255 characters in size.

* In Windows, access the specified locations to check the cookie contents.

Type Location

Server cookie C:\Windows\system32\config\systemprofile.erlang.cookie

Command line cookie C:\Users%USERNAME%.erlang.cookie

« In Linux, access the specified locations to check the cookie contents.

Type Location
Server cookie /var/lib/rabbitmq/.erlang.cookie
Command line cookie SHOME/ .erlang.cookie

5. Select one node to be the leader of RabbitMQ cluster.

111

https://www.rabbitmq.com/docs/clustering#erlang-cookie

6. In Command Prompt on Windows or Terminal on Linux of the server hosting the leader,
run the following command to obtain its node name.

bash

Windows
> rabbitmqctl status

Debian/Ubuntu or Red Hat/Rocky
$ rabbitmgctl status

7. In Command Prompt on Windows or Terminal on Linux of each member node server, run
the following command to join the node to the same cluster as the leader.

bash

Windows

> rabbitmqctl stop_app

> rabbitmgctl reset

> rabbitmqctl join_cluster <leader_node_name>
> rabbitmqctl start_app

Debian/Ubuntu or Red Hat/Rocky

$ rabbitmgctl stop_app

S rabbitmgctl reset

$ rabbitmgctl join_cluster <leader_node_name>
$ rabbitmqctl start_app

8. In Command Prompt on Windows or Terminal on Linux of all nodes, ensure they are in the
same cluster.

bash

Windows
> rabbitmqctl cluster_status

Debian/Ubuntu or Red Hat/Rocky
$ rabbitmgctl cluster_status

Setup Instructions
1. Sign to MDDC Control Center console with your Administrator account.

2. Navigate to Inventory > Services.

112

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#setup-instructions

3. Expand the RabbitMQ group.

4. Click Add service.

5. Enter the values for Name, Host, Port, Username and Password fields of individual

RabbitMQ nodes set up in Build RabbitMQ cluster.

OPSWAT.
MetaDefender
Distrbuted Cluster

2, LocALadmin

Services S
|
s
.

6. Click the Check icon in the bottom right to complete.

7. Ensure all RabbitMQ nodes are reachable by the MDDC Control Center.
OPSWAT -
2. User Management ~ Type Instance Count @ Status
- “ i RabbitMa n Healthy.

e

Certificates. + Add service

113

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#rabbitmq-cluster

High Availability support for Redis

O o

A minimum of two Redis instances must be installed on separate hosts for High Availability
solution to function properly.

An odd number of Redis Sentinels should be installed.

Redis Sentinel
1. Install Redis instances on servers.
2. Select one instance as primary. In Linux Terminal of the other instances [replicas], run the

following command:

bash

Debian/Ubuntu or Red Hat/Rocky
$ redis-cli replicaof <primary_host> <primary_port>

3. Build configuration file for Redis Sentinel.

bash

114

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha#redis-sentinel

The port on which the Sentinel should run
port <SENTINEL_PORT>

By default Redis does not run as a daemon. Use 'yes' if you
need it.

Note that Redis will write a pid file in /var/run/redis.pid
when daemonized.

daemonize yes

sentinel monitor myprimary <PRIMARY_IP> <PRIMARY_PORT> 2

sentinel monitor <master-name> <ip> <port> <quorum>

quorum is the number of Sentinels that need to agree about
the

fact the master is not reachable, in order to really mark
the master as

failing, and eventually start a failover procedure if
possible.

sentinel down-after-milliseconds myprimary 2000
means sentinel will consider master down after 2 seconds

sentinel failover-timeout myprimary 4000
means the chosen sentinel has 4 seconds to perform failover

sentinel parallel-syncs myprimary 2

sets the number of replicas that can be reconfigured to use
the new master

after a failover at the same time. The lower the number, the
more time it

will take for the failover process to complete, however if
the replicas are

configured to serve old data, you may not want all the
replicas to

re-synchronize with the master at the same time. While the
replication process is

mostly non blocking for a replica, there is a moment when it
stops to

load the bulk data from the master. You may want to make
sure only one

replica at a time is not reachable by setting this option to
the value of 1.

115

‘, Info

Duplicate the configuration file and modify SENTINEL_PORT to the appropriate port that the
Redis Sentinel instance listens on.

4. Install Redis Sentinel instances on servers with the corresponding configuration files.
bash

Debian/Ubuntu or Red Hat/Rocky
$ sudo redis-server </path/to/sentinel-config-file> --sentinel

5. Verify the Redis primary and its replicas. In Linux Terminal of any machine, run the
following command:

bash

Debian/Ubuntu or Red Hat/Rocky
$ redis-cli -h <sentinel_host> -p <sentinel_port>

Provides information about the Primary
> sentinel master myprimary

Gives you information about the replicas connected to the
Primary
> sentinel replicas myprimary

Provides information on the other Sentinels
> sentinel sentinels myprimary

Provides the IP address of the current Primary
> sentinel get-master-addr-by-name myprimary

Setup instructions
1. Sign to MDDC Control Center console with your Administrator account.
2. Navigate to Inventory > Services.
3. Expand the Redis group.
4. Click Add service.

5. Enter the values for Name, Host, Port, Username and Password fields of individual Redis
instance.

116

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha#setup-instructions

OPSWAT.
MetaDefender
Distributed Cluster

88 Dashboard
D History

3 Workflow Management
2, User Management

@ inventory

Services
Workers
Packages
Licenses

Certificates.

@ setings

OPSWAT.
MotaDefendar
Distrbuted Cluster

88 Dashboard
D History

93 Workflow Management
2, User Management

@ nventory

Services
Workers.
Packages
Licenses

Certificates

& Settngs

&, LocAUadmin

b RabbitMa a3 Healthy
Type Instance Count @ Status.
& Redis) Healthy
Name Host Port Status Role Version Platform Last Healthy Last Update ‘Added By +
| Entorname ostname Por |
o —
MDDC Control Center only accepts Redis and not Redis Sentinel.
6. Click the Check icon in the bottom right to complete.
7. Ensure all RabbitMQ nodes are reachable by the MDDC Control Center.
S, LoCAU/admin
W Data Warehouse n Healthy
Type Instance Count @ Status
b RabbitMa a3 Healthy
Type Instance Count @ Status
S Redis n Healthy

117

o

o

High Availability support for PostgreSQL
Data lake

Installation

o Info

e repmgris compatible solely with Linux-based operating systems.

» The repmgr version in use must be compatible with the major version of the installed
PostgreSQL.

» All PostgreSQL servers must be of the same version and run on the same Operating
System.

High availability solution for PostgreSQL data lake requires a single primary server along with a
minimum of two standby servers. Both PostgreSQL and repmgr must be installed on every server.

On the servers that target to run as standby:

» Do not create a PostgreSQL instance [i.e., do not execute initdb or any database
creation scripts provided by packages].

» Ensure the destination data directory exists and is owned by the postgres system
user.

1. Select your Linux distribution here and follow the steps to install PostgreSQL accordingly.

2. Follow the steps to install repmgr.

Primary configuration
1. Choose one of the installed servers to be the primary one.

2. Navigate to the folder containing postgresql.conf file and create a replication config file
named postgresql.replication.conf.

118

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#installation
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.repmgr.org/docs/current/installation-packages.html
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#primary-configuration

" Info

By default, postgresql.conf file is placed at

e /var/lib/pgsql/<version>/data/ on Red Hat/Rocky.

e /var/lib/postgresql/<version>/main on Debian/Ubuntu.

bash

119

Enable replication connections; set this value to at least
one more

than the number of standbys which will connect to this
server

(note that repmgr will execute "pg_basebackup" in WAL
streaming mode,

which requires two free WAL senders).

#

See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-MAX-WAL-SENDERS

max_wal_senders = 10

If using replication slots, set this value to at least one
more

than the number of standbys which will connect to this
server.

Note that repmgr will only make use of replication slots if
"use_replication_slots" is set to "true" in "repmgr.conf".
(If you are not intending to use replication slots, this
value

can be set to "0").

#

See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-MAX-REPLICATION-SLOTS

max_replication_slots = 10

Ensure WAL files contain enough information to enable read-
only queries

on the standby.

#

See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-WAL-LEVEL

wal_level = 'hot_standby'

Enable read-only queries on a standby

#

See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-HOT-STANDBY

hot_standby = on
Enable WAL file archiving
#

See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-ARCHIVE-MODE

120

archive_mode = on

Set archive command to a dummy command; this can later be
changed without

needing to restart the PostgreSQL instance.

#

See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-ARCHIVE-COMMAND

archive_command = '/bin/true'

This config should be added if you plan to use repmgrd for
automatic failover

See: https://www.repmgr.org/docs/current/repmgrd-basic-
configuration.html

shared_preload_libraries = 'repmgr'

wal_log_hints = on # for pg_rewind when rejoin

3. Add the replication configuration file name to the end of postgresql.conf file and save
the modifications.

bash
include 'postgresqgl.replication.conf’

4. In Terminal, run the following commands to create repmgr user and database.

bash

$ createuser -s repmgr
S createdb repmgr -0 repmgr

" Info

In this guideline, although the term repmgr is used for both user and database, any names
can be used.

5. Edit pg_hba.conf file to configure the authentication

bash

121

Ensure the repmgr user has appropriate permissions in
pg_hba.conf

and can connect in replication mode

pg_hba.conf should contain entries similar to the following:
Uncomment this if you want to access Postgresql database via
pgadmin with user "postgres":

#host all postgres 0.0.0.0/0
scram-sha-256

local replication repmgr

trust

host replication repmgr 127.0.0.1/32
trust

#or

host replication repmgr 0.0.0.0/0
trust

local repmgr repmgr

trust

host repmgr repmgr 127.0.0.1/32
trust

#or

host repmgr repmgr 0.0.0.0/0
trust

6. Restart PostgreSQL server.

bash

$ cd /path/to/pg_ctl
$ pg_ctl -D <postgresql_data_dir> restart

7. Create repmgr.conf file, fill out information in brackets and store it in a location of your
choice.

repmgr.conf file should not be placed inside PostgreSQL data folder as it may be
overwritten.

bash

122

node_id=<any_node_id>

node_name=<any_node_name>

connection info of the current node
conninfo="host=<host_address_of_node> user=repmgr
dbname=repmgr connect_timeout=2'
data_directory='<postgres_data_dir>"'

failover="automatic' # for repmgrd (automatic failover)
promote_command='<postgres_dir>/repmgr standby promote -f "
<your_dir>/repmgr.conf" --log-level INFO'
follow_command='<postgres_dir>/repmgr standby follow -f
<your_dir>/repmgr.conf" -W --log-level INFO'

reconnect_attempts='5"'

reconnect_interval="1"'

monitor_interval_secs="'1"'

pg_bindir="'<postgres_dir>"'

enable this so that repmgr only vote new primary

when none of the standbys can connect to current primary
primary_visibility_consensus=true

Key Red Hat/Rocky Debian/Ubuntu

postgres_data_ /var/1lib/pgsql/<version>/d /var/lib/postgresql/<version>/

dir ata/ main/

postgres_dir /usr/pgsql-<version>/bin/ /usr/lib/postgresql/<version>/
bin/

your_dir Directory to repmgr.conf file. Directory to repmgr.conf file.

8. In Terminal, run the following commands to register the primary server.

bash

$ cd path/to/repmgr
S repmgr -f <repmgr_config_file_path> primary register

INFO: connecting to primary database...

NOTICE: attempting to install extension "repmgr"
NOTICE: "repmgr" extension successfully installed
NOTICE: primary node record (id: 1) registered

Standby configuration

1. Create repmgr.conf file and modify values of node, node_name, conninfo accordingly.

123

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#standby-configuration

2. Store the file in your reference location.

3. Stop PostgreSQL server.

bash

$ cd /path/to/pg_ctl
S pg_ctl -D <postgresql_data_dir> stop

4. In Terminal, run the following commands to clone data from the primary server.

bash

$ cd path/to/repmgr
$ repmgr -h <primary_server_host> \

-U repmgr -d repmgr \ # primary repmgr <user> and
<database>

-f <standby_repmgr_config_file_path> \

-c¢c \ # fast checkpoint to speed up process

standby clone \

--dry-run # dry run to check if the primary can be
cloned

$ repmgr -h <primary_server_host> \
-U repmgr -d repmgr \ # primary repmgr <user> and
<database>
-f <standby_repmgr_config_file_path> \
-c \ # fast checkpoint to speed up process
standby clone

5. Start PostgreSQL server.

bash

$ cd /path/to/pg_ctl
S pg_ctl -D <postgresql_data_dir> start

6. In Terminal, run the following commands to register the standby server.

bash

124

$ cd /path/to/repmgr
S repmgr -f <standby_repmgr_config_file_path> \
standby register

7. Check if the node was registered successfully.

bash

$ cd /path/to/repmgr
S repmgr -f /etc/repmgr.conf cluster show

Automatic failover

In Terminal, run the following command to start Replication manager daemon on all PostgreSQL
servers (including primary and standbys]

bash

$ cd /path/to/repmgr
S repmgrd -f <repmgr_config_file_path>

Rejoin after a failure

‘, Info

Replication manager daemon repmgrd does not automatically join a failed PostgreSQL
server node to the cluster. Consequently, the cluster contains at least two primary nodes at
one time, and the system administrator has to join the node to the cluster manually.

1. Do not restart the failed PostgreSQL server, run the following command.

bash

$ cd /path/to/repmgr
S repmgr -f <repmgr_config_file> node rejoin \

--force-rewind \ # use pg_rewind to help with diverge
timeline

-d 'host=<current_primary> dbname=repmgr
user=repmgr'

125

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#automatic-failover
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#rejoin-after-a-failure

2.

bash

If a node rejoin fails, do register the failed node as a standby. In Terminal, run the following
command.

$ cd /path/to/repmgr
$ repmgr -h <current_primary_server_host> \

-U repmgr -d repmgr \ # primary repmgr <user> and

<database>

-f <standby_repmgr_config_file_path> \
-c \ # fast checkpoint to speed up process
-F \ # this overwritten the the data folder if it

was created

3.

bash

standby clone \

Start PostgreSQL server.

$ cd /path/to/pg_ctl
S pg_ctl -D <postgresqgl_data_dir> start

4.

bash

Force register the node as a standby.

$ cd /path/to/repmgr
S repmgr -f <standby_repmgr_config_file_path> \

-F \ # forcefully overwrite an existing node record

or user --force

standby register

Setup instructions

1.
2.
3.
4.

Sign to MDDC Control Center console with your Administrator account.
Navigate to Inventory > Services.
Expand the Data Lake group.

Click Add service.

. Enter the values for Name, Host, Port, Username and Password fields of individual

PostgreSQL instance.

. Click the Check icon in the bottom right to complete.

126

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#setup-instructions

OPSWAT.
MetaDefender
Distributed Cluster

88 Dashboard

D History

98 Workflow Management
2, User Management

@ Inventory

Services
Workers
Packages
Modules
Licenses

Certificates

@ Settings

2, LOCAL/admin o

Services C Refresh
v o to Workers
v Tye Instance Count @ Status
 Datalake 22 Healthy
Name Host Port Stats Role Version Platform LastHealthy LastUpdate Added By +
104017054 104017054 5432 Healthy Primary 9 Linux Aug28,2025a.. Aug28,2025a.. LOCAUadmin
1040770110 1040470110 5432 Healthy Standby 1610 Linux Aug28,2025a... Aug28,2025a.. LOCAUadmin
Name* Host* Port*
| 1040170108 10.40.170108 5437 |
Username* Password*
Enter username Enter password
> Type Instance Count @ Status
W Data Warehouse ”n Healthy
> Type Instance Count @ Status B
@ File Storage 33 Healthy

7. Ensure all PostgreSQL instances are reachable by the MDDC Control Center.

127

System settings

This section shows MetaDefender Distributed Cluster settings.

128

Data Retention

You can find this feature under: Settings > Data Retention.

This setting enables users to define the retention period for specific data types, helping optimize
system storage and maintain efficiency.

Available Data Categories
1. Processing History: History of scan results.
2. Executive Report: Statistics data.

3. Audit Log: Detailed logs of user actions and system events.

In case you do not want to enable automatic clean up, set the value to off. This will prevent
automatic removal.

Disabling automatic clean-up may lead to data accumulation, which can affect system
performance and increase storage costs.

Settings

- =) == < ©

Security Module Update Data Retention Health Check Export About

Data Retention

Automatically delete data after a certain time
Processing history Older than | Off v
Executive report Older than | 6 months v

Audit log Older than | Off v

129

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-data-retention#available-data-categories

130

Remote Support Package Gathering

The support package contains log files and is essential for OPSWAT to troubleshoot issues. Since
version 2.2.0, it is now possible to gather a support package remotely via the web console of the
MetaDefender Distributed Cluster Control Center.

o Info

Ensure that all MDDC services are upgraded to version 2.2.0 or higher to fully support this

feature.

Remote support package gathering steps:

1. Goto Settings > Export .

2. Select which MetaDefender Distributed Cluster services need to generate support package,
then select Generate

QPSWAT.
MetaDefender
Distributed Cluster

88 Dashboard

D History

93 Workflow Management
2, User Management
[Inventory

& Settings

Settings
-
=) = =) e
Security Module Update Data Retention Export
Export Support Package
Collect log files, system informatien and other diagnestic data.
1. Select Services
Name
Al
M File Storage I identity Service
B workers I File Storage: Fs
Control Center Worker: Worker-Core
Identity Service Worker: Worker-Apigw
2. Suppart Package Details
Start Time Duration

131

sbout
ml - | [senerate
Host Port
8390
8303
1821681012 8303
Status Action

®

No data available

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-remote-support-package-gathering#remote-support-package-gathering-steps

0 Info

Select the MetaDefender Distributed Cluster Worker service to generate a support package for
its deployed instance as well.

3. Wait for the generation process to complete successfully. Once it is done, the download
button will appear, and the support packages will be ready for download.

2.Support Package Details

v oD Start Time Duration Status Action
1753872435977 7/30/25,5:46PM 155730ms @ Success & Download

Sorvico Name Host startime Duration Statue
@ Identity Service - 7/30/25. 5:48 PM 105 39ms @ success
af 192188101 7/30/25. 5:48 PM 105 39ms @ Success
& worker-core 192:188.10.11 730/25, 5:48 PM 55 10ms: @ success

& worker-apigw 18216810.12 730125, 5:48 PM 105 20ms @ success

0 Info

The size of the support package may vary depending on log size and the number of days for
collection. If disk space is insufficient, certain log files may be excluded from the support
package.

All support package files will be downloaded to the MetaDefender Distributed Cluster Control
Center. Please monitor the disk space on the host running this service when using this
functionality, as the size of log files can be very large.

4. Click Download

0 Info

Some services may fail due to connection issues or insufficient disk space. In such cases,
only the successfully generated support packages will be available for download. Users can
view detailed error information if failures occur.

132

Security

Setup HTTPS

Transport Layer Security (TLS] is a cryptographic protocol that provides communications security
over a computer network. Websites, like the Web Management Console, are able to use TLS to
secure all communications between their servers and web browsers.

The TLS protocol aims primarily to provide confidentiality (privacy) and data integrity between two
communicating computer applications.

O o

HTTPS is not enabled by default. As a consequence sessions between the wizard's backend
and the browser may be insecure.

Steps to setup this feature:

1. Goto Inventory> Certificates
2. Click Add certificate

a. To add a certificate using a file path, choose Add by path and enter the location of
both the certificate and its corresponding private key file.

b. To upload certificate file, select Upload file.

Upload file
Add by path

Name Effective Time Expiration Time Upload Time & UsedBy +

Certificate YML sample file:

yaml

134

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#setup-https

private_key: |
MITJQwIBADANBgkghkiG9wOBAQEFAASCCSOwggkpAgEAAOICAQC]jYtuWaICCY@
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo51602mqlqcLhT/kmpoR8Di3DAm
HK

NSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
77

toGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
Su

0x1Z13d6ehLRm7 /+Nx47M3XMTRH5qKP/7TTE2s0U6+MOtsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK412p
HN

uC53QVc/EF++GBLAXxmvCDq9ZpMIYi70mzkkAKKCOUeb6Ef217LFQCFIBKIZzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfqnVenPN1IM
Sn

zXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtWB1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLNB3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAOICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di70ZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6émYMc8TmJsg@ewLdBCOZVw+wPABlaqz+BUOiSMMftp
k9

fz9JWGd8ERYBsT+tk3Qi6DOVPZVsC1KgxxL/cwIFd3Hf2ZBtJXeBKBn1pktWht
5A

135

Kgx9m1ld20v17NjgiC1Fx9r+fZw/i0abFFwQA4dr+R8mEMK/7bd4VXfQ10/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBt0ODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDy jKT1
Q8

YZkpIcLNVLWOuUusoGYHFmM2rvCyEV1fsE3Ub8cFyTFk50Se0cF2QL2xzKmmbZEpX
gl

xBHROhjgon@IKJDGfor4bHO7Nt+1Ece8u20TEKvpz5aIn440eC5mApRGy83/06b
B

esnWjDE/bGpoT8qFuy+0urDEPNId44XcJm1IRI1IG56ErxC310sT11wrIpTmXXck
qw

zFR9s22z7f0zjeyxqZg4NTPI7wkM3M8BX1vp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgH124nTgBOUH10jZsABA0oIBAQDOXxftSDbSqGytcWqPYP3SZHAWDABO4ACEM+e
Cw

au9ASut10IDINDMJ8NC2ph25BMe5hHDWp2cGQJog7pZ/39QogQho2gUniKDifN
77

40Qdyk11TzTVROgmP8+efreIvqlzHmuqaGfGs50TkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17ga++xh5mfE25c+MOfiIBTiNS041TxWMBShnK8xrGaMEmN7WeqTMb
FH

PgQz5FcxRjCCqwHilwNBeLDTp/ZECEB7y34khVh531mBE2mNZSVIQCcGZP1I/Dv
XJ

W7UUNdgFwii/GW+6MOuUDy23UVQpbFzcV801C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6Wx0KjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTh8Z019BowytN+t
ré

2ZFoIBA9Ubc9esEAU813fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOMbSUhN3PG
2m

39I802uBfFNVQCJIKhxTmTMFFLOU71VcDS9JN+0YVPb6MDfBLM5jO0iPuYkFZ4gH
79

J7gXI0/YKhad7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw
DC

136

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYcOrlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7A0IBAGKZKIMDXdCxBWKhNYJ8z7hiItN11IZZMW2TPUiY@rléya
Ch

BVXjMOWOre7QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOQjCZ5IUufIvEpqVSmtF8MqfX0909ulYLokr
wQ

x1dB15UnuTLDqw8bChq705y6yfulaOWvL7nxI8NvSsfjdy6359Ia/0dFeBYZEF
HI

ULGANVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns60Ds6 Th9AECggEBAJYzd+S0Y026iBu3nw
3L

65uEeh6xou8pXHBTu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7T0jt41UdqIKO8VvN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/tB8EXs79S5IKPcgAx87sTTi7KD
NS

SYt4tr2uPEe53NTXuSatilG5QCYEXIELOuzWAMKzg7CAiI1INS9foWelyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9ovK9yrwF6X44ItRo0JafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLg+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt /8yvPf1S+xv3kg/ZBvR9JB1IN2n3rUCYYD47ReKFqJO3Vmg5C9
ny

56s9w70U08perBX1JYmKZQh042931vxZD2Iq4NcZbVSCMoHAUZzhzY3brdgtSIx
a2

gGveGAezZ38gKIU26dkz7deECY4vrsRkwhpTWOLGVCpjcQoaKvymAoCmAs8V2o
Mr

Ziw1YQ9uOUoWwOgmiwZagmVcOXvPIS2gWAs3fQLlWjHOhkcQTMsUaXQDODBagkSY
3E

NgOvbCV1/0UpRi3076khCoAXITbKSn/AvR3KDP14B5toHI/F50TSEiGhhHesgR

137

rs
fBrpEY1IATtPq1taBZZogRqI3rOkkPk=

MIIF5jCCA86gAWIBAgIJANG50IuwPFKgMABGCSqGSIb3DQEBCWUAMIGGMQswCQ
YD

VQQGEwWJHQjEQMA4GATUECAWHRXJ1d2hvbjETMBEGATUEBWWKQWxsIGFyb3VuzD
Eb

MBKGATUECgwSbG1id2Vic29ja2Vacy10ZXNOMRIWEAYDVQQDDAlsb2NhbGhvc3
Qx

HzAdBgkghkiG9wOBCQEWEG5vbmVAaW52YWxpZC5vemcwIBCNMTgwMzIwMDQXN j
A3

WhgPMjExODAYMjQwNDE2MDdaMIGGMQswCQYDVQQGEWJHQjEQMA4GATUECAWHRX
J1

d2hvbjETMBEGATUEBWWKQWxsIGFyb3VuZDEbMBkGATUECgwSbGlid2Vic29ja2
Ve

cyT10ZXNOMRIWEAYDVQQDDA1sb2NhbGhvc3QxHzAdBgkqhkiGOwBBCQEWEGSvbm
VA

aW52YWxpZC5vemewggIiMABGCSqGSIb3DQEBAQUAA4ICDWAWggIKAOICAQCjYt
uW

aICCYOtJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I1602mqiqcLhT/kmpo
R8

Di3DAMHKNSWAPWtn1BtXLErL1UiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1D1/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSUBx1Z13d6ehLRm7 /+Nx47M3XMTRH5gKP/7TTE2s0U6+MOtsGI2zpRi+
mé

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
wQ

Ujy5N8pSNp7szdYsnLJpvAdOsibrNPjCOFQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK412pHNuC53QVc/EF++GBLAXmvCDQ9ZpMIYi70mzkkAKKC9Ueb6ET217LFQCFI
BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf21lon4fEZr3+vRuc9shfgn
Vo

NPN1IMSnzXCast7I2fiuRXdIz96Kj1GQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTvP/AuehKXncBJhYtWO1tTioVx+5yTYSAZW1+IssmXjefxJqYi2/7QWmv1QC
op

sNcjTMaBQLNO3T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
Qu

ImYU23tW2zsomkKTAXarjr2vjuswHwYDVROjBBgwFoAUImMYU23tW2zsomkKTAX
ar

jr2vjuswbwYDVROTAQH/BAUWAWEB/zANBgkghkiGO9wOBAQsFAAOCAGEANJIBMr
ow

YNCbhAJdP7dh1hT2RUFRdeRUJDOIXxrH/hkvb6myHHNK8n0YezFPjUlmRKUgNED
uA

xbnXZzPdCRNVIV2mShbXvCyiDY7WCQE2Bn44z2600uWVk+7DNNLHI9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsil6Ul6cyBQLlTJWKVLEUQQ6Yyda582e23J1AXqtqFcpfoE
34

H3afEiGy882b+ZBiwkeV+0q6XVF8sFyr9zYrv9CvWTY1lkpTQfLTZSsgPdEHYVc
jv
xQ2D+XyDROaRLR1vxUa9dHGFHLICG34Juq5Ai61M1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
2g

TWpTH1umlC1lZeP+G/jkSyDwgNnTulaodDmUa4xZodfhPTHWPWUKFcq80Qr148Q
YA

A01bU0JQU7QWRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUUTWjMbWg6
Gg

mnIZLRerQCu100zr87r0QqQakPkyt8BUSNK3K42j2qcfhAONdR18Hq8Qs5pupy
+s

8sdCGD1wR3JNCMv6u480K87F4mcIxhkSefFJUFII25pCGNSWtE4p51+9¢cn01Gr

IX
e2H1/7M0c/1bZ4FvXgARlex2rkgSOKa06HE=

139

3. Go to Settings > Security
4. On the Secure Connection section, click Details

5. Select Enable Certificate , then select your certificate added in step 2.

Secure Connection X

[Information
It may take up to 30 seconds for certificate to be applied.
MetaDefender Distributed Cluster will not be accessible during the
process.

@D Enable certificate
[* indicates required]

Select certificate®

My Cert v

Add Certificate

Applying HTTPS settings may take some time. During this process, the MetaDefender
Distributed Cluster Control Center web console will be temporarily unavailable.

Password policies

Password Policy settings are accessible under Settings > Security tab.

o Info

These password policies changes only apply to new user creations and future password
changes. Existing users' passwords are unaffected.

Local users' password can be enforced to meet requirements set by administrators, which
includes following constraints:

140

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#password-policies

+ Enforce password policy:

o Determines the number of unique new passwords that must be associated with a
user account before an old password can be reused

o Range: [0-24]
o Default: 0 (to disable enforcement]
* Minimum password length:
o The least number of characters that can make up a password for a user account
o Range: [0-30]
o Default: 0 (to disable enforcement]
+ Password must meet complexity requirements:

o Determines whether passwords must meet a series of guidelines that are considered
important for a strong password.

o Default: unchecked

Password policies @) Enforce password history
Number of unique new passwaords associated with an account before an old
password can be reused.

Passwords remembered [0-24) 0 -

@) Password must meet complexity requirements
At least 4 characters in length
At least 1uppercase letter of European languages (A through Z)
At least 1lowercase letter of European languages (a through z)
At least 1 base 10 digits (0 through 9]
At least 1 non-alphanumeric characters: (~!@#$%A&*_-+="|0{H]:;"'<>,.2]

@) Enforce min password length

Min password length (0-30] 0 -

Session policies
Administrators can enforce session policies for local users to ensure compliance with
organizational requirements, using the following settings:

+ Enable idle session timeout:

o |dle timeout automatically terminates a user's session based on how long since their
last recorded activity.

o Default: 300 seconds.
+ Enable session timeout

o Absolute timeout terminates an individual user's session after a fixed duration,
regardless of any user activity.

o Default: O (to disable enforcement]
+ AllowDuplicate Sessions
o Permit the same user to log in and operate multiple sessions at once.

o Default: Enabled.

141

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#session-policies

» AllowCross IP Sessions
o Permit requests from sources other than the authenticated origin.

o Default: Disabled.

Session policies @D Enable idle session timeout 300
Idle timeout to invalidate individual user’s session
based on that user last activity.

@) Enable session timeout 0
Absolute timeout to invalidate individual user’s
session regardless of that user activities.

@D Allow Duplicate Sessions
Allow same user to have multiple active sessions.

@) Allow Cross IP Sessions

Allow requests coming from sources different from
the authenticated origin.

142

File Storage

MetaDefender Distributed Cluster [MDDC] introduces a built-in file storage server known as MDDC
File Storage. The server stores and manages the live time of files and their duplications.

The administrator can set up MDDC to work with a single instance of MDDC File Storage or build a
group of MDDC File Storage instances.

OPSWAT. o

2, LoCAUadmin Q
MetaDefender
Distributed Cluster

88 Dashboard >
v Type Instance Count @ Status
D Histe
D History > & File Storage 33 Healthy
©8 Workflow Management >
Name Host Port Status Versic Platform LastHealthy LastUpdate AddedBy +
2, User Management
FILEST.. 104017074 8890 Healthy 2. Linux Aug1,2025.. Jul30,202.. LOCAU/ad...
& Inventory v
FILEST.. 10407075 8890 Healthy 2. Linux Aug1,2025.. Jul30,202.. LOCAUad...
Services
FILEST.. 1040170.69 8890 Healthy 2. Windows Aug12025.. Jul30,202.. LOCAU/ad..
Workers
Packages + Add service

From Inventory > Services of the MDCC Control Center web console, the administrator can
click on the gear icon in the top left corner of the File Storage group to access MDCC File
Storage settings.

143

File Storage Settings X

Min replica* @

4

1

1

Max replica* @

4

1

Clean up range*

off v

Data protection at rest* @

Salt v

Multiple instances

When several instances of MDDC File Storage are added to the File Storage group, Min Replica
and Max Replica enable the administrator to configure the operation of the storage group, as
shown in the table below.

144

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#multiple-instances

Setting

Behavior

Min

Max

Min

Max

Min

Max

replica

replica

replica

replica

replica

replica

> 1

> Min replica

>1

= Min replica

Every file is stored without a backup across all File
Storage servers. File Storage servers in the group
implement a Sharding solution for file storage. Since
there is no backup for any file, if one server in the group
goes down, files managed by that server will be lost to
the clients. This setup provides the best performance
but also poses a high risk of data loss.

Every file is stored on at least Min replica number of
File Storage servers and at most Max-replica number
of servers. The setting provides High Availability
support for File Storage. In most cases, Min replica
and Max replica are configured to 2 and 3, creating a
balance between performance and efficiency in High
Availability.

Every file is fully stored on Max replica number of file
storage servers and will not succeed if it can not be.
This setting is the strictest among three options and
should be considered carefully due to its impact on
system performance.

Replication of a file across several MDDC File Storage servers significantly impacts the overall
system performance. Hence, the number of replications must be evaluated thoughtfully.

Data retention

The administrator can configure data retention for files stored in the File Storage group with the
Clean up range option. By default, this option is disabled. The administrator has the option to
retain files for 12 hours, 1day, 1 week, etc., starting from the present time.

145

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#data-retention

. 12 hours .

1 day
Tweek

2 weeks
3 weeks
4 weeks
3 months
B months

12 months
prf ~

Data protection at rest* (@

Salt v

o Info

Files eligible for retention include those produced by CDR, DLP, SBOM, Quarantine engines.

Package [.msi, .deb or .rpm] and module files are marked for cleanup manually and will
never be affected by data retention.

Data protection

By default, all files stored on the MDDC File Storage server are XOR bitwise with a randomly
generated binary string. This option is enabled by default to prevent the file from being executed
successfully due to unexpected factors. The administrator can disable the option to optimize
MDDC File Storage performance, though it may expose the system to security risks.

146

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#data-protection

Data protection at rest* @

Balt

None

Salt

147

System Upgrade

A primary focus of MetaDefender Distributed Cluster [MDDC] is to reduce the disruption of file
processing during system upgrades. The levels of impact on file processing during component
updates are outlined as follows:

Impact

Component level Upgrade method
MetaDefender Core 0 Deferral by MDDC Control

Center
MetaDefender Distributed Cluster Worker 1 Manual by Installer file
MetaDefender Distributed Cluster API 1 Deferral by MDDC Control
Gateway Center
MetaDefender Distributed Cluster Control 1 Manual by Installer file
Center
MetaDefender Distributed Cluster Identity 1 Manual by Installer file
Service
MetaDefender Distributed Cluster File Storage 2 Manual by Installer file

The potential impacts of each level are detailed below.

Level Impact
0 The upgrade does not impact file processing.
1 The upgrade does not impact the processing of existing files but may affect the

submission of new files, fetching scan result, downloading processed files,
monitoring or management.

2 The upgrade needs the entire system to go down.

MetaDefender Distributed Cluster hosts a vast majority of MetaDefender Core instances. During
the MetaDefender Core upgrade, each instance is upgraded sequentially to prevent interference
with the system’s file processing. Intrinsically, the MetaDefender Core upgrade is controlled and

148

https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#deferral-by-metadefender-distributed-cluster-control-center
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#deferral-by-metadefender-distributed-cluster-control-center
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file

managed strictly by MDDC Worker and MDDC Control Center. These services guarantee that the
MetaDefender Core instance is safely isolated from new file submissions and continues
processing until all files are finished on its end before the upgrade procedure takes place.

While not impacting file processing, the upgrade of MDDC Worker may cause a hiccup in
reporting the status and resources consumed by the MetaDefender Core or MDDC API Gateway
instance to MDDC Control Center. Consequently, users may slightly notice that one of their
workers is occasionally missing from their dashboards.

During the MDDC API Gateway upgrade, clients may not be able to submit files, fetch scan
statuses, or download processed files from the service. The deployment of multiple instances of
the MDDC API Gateway should be considered to reduce service interruptions.

MDDC Control Center is designed for system administrators to manage and monitor operational
services [MetaDefender Core, MDDC API Gateway, etc.], thus its upgrade solely affects the
administrators and does not file processing.

Although file processing remains uninterrupted, the upgrade of MDDC Identity Service may
affect the authentication of users accessing MDDC Control Center. It may also cause temporary
failures in validating requests that contain API key header in MDDC APl Gateway.

Most of services within the system establish connections to MDDC File Storage, thus its upgrade
results in system downtime. Consequently, the upgrade of MDDC File Storage requires the
system administrator to place the entire system in scheduled maintenance mode and this
should be executed during a period when no files are sent for scanning.

Upgrade Methods

Manual by Installer file

O no

Appliable for MDDC Control Center, Worker, Identity Service and File Storage.

1. Download installer package from My OPSWAT.
2. Access the machine that hosts component service pending for upgrade.

3. Start Command Prompt as Administrator on Windows or Terminal as Super user on Linux
and run one of the following commands:

bash

149

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#upgrade-methods
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#manual-by-installer-file
https://my.opswat.com/portal/home/metadefender-core

Windows
> msiexec.exe /i <new_installer> /qgn

Debian or Ubuntu
$ sudo dpkg -i <new_installer> || sudo apt install -f

Red Hat or Rocky
$ sudo yum install <new_installer> -y

4. Confirm the service starts successfully.

Deferral by MetaDefender Distributed Cluster Control Center

" Info

Appliable for MDDC API Gateway and MetaDefender Core.

1. Download installer package from My OPSWAT.
2. Sign in to MDDC Control Center console with your administrator account.

3. Navigate to Inventory > Packages, click Upload packages.

50
50

SWAT. s

wentory | Packages

Q search by name Advanced v
[Name Type Plattorm Version

[madc-api-gateway-21.0-164 Lmsi X aPiGatenay Windows. 210

Workers

4. Goto Inventory > Worker, click Deploy workers and select Upgrade.

oeptoyworkers v |

O RAMO DO ot Port =

4 683 mB5CE 1e2iEBION asen

5. Select the correct installer version and click Upgrade.

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#deferral-by-metadefender-distributed-cluster-control-center
https://my.opswat.com/portal/home/metadefender-core

Upgrade X

Warning!
If your system includes multiple instances running on different operating

systems, ensure you have uploaded the appropriate installers for all
those 0S versions before proceeding.

AP| Gateway Select a version for the upgrade w

MetaDefender Core 515.0 v

6. Wait until the upgrade finishes and verify that the components have been upgraded to the
correct versions.

Inventory / Workers Deptoyworkers - |
>

>

[Recuiresatlasst one AP Gateway tobe deploye.
O3 WorkflowManagement > Q searchby name ©Rotrosh
ow Name. Type Version Instance Version Platform Status CPUD RAMD DkD Host port =

[ssessodoeise.. Cownstance {5 MetaDefender Cora 20 suz Windows)Upgrading 4 esss wesce ie2iesi0n £

7. Verify system health and status.

O o

During the upgrade process, modifications to the settings outlined below are prohibited:

o Workflow
* Module Update
o Health check

Upgrade procedures

Follow the steps to upgrade to MetaDefender Distributed Cluster v2.4.0

151

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#upgrade-procedures
https://www.opswat.com/-

152

Performance and Load Estimation

These results should be viewed as guidelines and not performance guarantees, since there
are many variables that affect performance (file set, network configurations, hardware
characteristics, etc.). If throughput is important to your implementation, OPSWAT
recommends site-specific benchmarking before implementing a production solution.

Factors that affect performance

MetaDefender Core version

» MetaDefender Core engine package and configuration
o set of engines (which and how many)
o product configuration [e.g., thread pool size]
» MetaDefender Distributed Cluster API Gateway version
» System environment
o server profile (CPU, RAM, hard disk]
o client application location - remote or local
o system caching and engine level caching
 Dataset
o encrypted or decrypted
o file types
= different file types [e.g., document, image, executable]
= archive file or compound document format files
o filesize
o bad or unknown [assume to be clean]

« Performance tool

Performmance metrics

While processing files on the system, service performance is measured by various metrics. Some
of them are commonly used to define performance levels, including:

153

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#factors-that-affect-performance
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#performance-metrics

Performance metrics

Description

Number of processed objects per hour
vs. Number of processed files per hour

Submission load

[number of successful requests per
second])

Average processing time per object

On MetaDefender Core, meaning of “files” and
“objects” are not the same.

« “files”: exclusively refers to original files
submitted to MetaDefender Core. These
could be either archive or non-archive file
formats. For archives, depending on
archive handling settings, MetaDefender
Core may need to extract them and
process all nested files inside as well. For
example, one archive file could contain
millions of nested files inside.

* “objects”: refers to any individual files
that MetaDefender Core must process.
These could be separate original files
submitted to MetaDefender Core, or
extracted files coming from an archive.
The number of processed objects is
considered to be a more accurate
throughput metric to measure
MetaDefender Core performance.

The primary metric used to measure average vs
peak throughput of a MetaDefender Core system
is “processed objects per hour.”

This performance metric measures the load
generated by a test client application that
simulates loads submitted to MetaDefender
Core.

A submission is considered successful when
the client app submits a file to MetaDefender
Core and receives a datalD, which indicates that
the file has successfully been added to the
Queue.

Submission load should measure both average
and peak loads.

The primary metric used to measure processing
time of a MetaDefender Core system is “avg
processing time (seconds/object].”

154

Performance metrics

Description

Total processing time

[against certain data set]

Total processing time is a typical performance
metric to measure the time it takes to complete
the processing of a whole dataset.

How test results are calculated

Performance [mainly scanning speed] is measured by throughput rather than unit speed. For
example, if it takes 10 seconds to process 1o0bject, and it also takes 10 seconds to process 10

objects, then performance is quantified as 1second per object, rather than 10 seconds.

» total time / total number of objects processed: 10 seconds / 10 objects = 1second / object.

Dataset

File
File category type Number of files Total size Average file size
Document DOC 3,820 534 MB 0.14 MB
Medium archive RPM 50 Compressed size: Compressed size:
files CAB 2.8 GB Extracted 56.02 MB Extracted
EXE size: 12.09 GB size: 0.036 MB
Big archive files CAB 4 Compressed size: Compressed size: 715

Environment

Topology

2.9 GB Extracted
size: 124 GB

155

MB

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#how-test-results-are-calculated
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#dataset
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#environment
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#topology

I:l instance

EC:
Clien

G

I:l EC2instance

API Gateway

&

EC2 nstance I:l E

stance
RabbitMQ File Storage

Core Core Core Core Core

MD Core MD Core
Core Core Core Core Core Core

Using AWS environment with the specification below:

MDDC system

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#mddc-system

File API

MD Core Storage Gateway PostgreSQL RabbitMQ Redis
0s Windows Rocky Rocky Rocky Linux ~ Rocky Rocky

Server Linux 9 Linux 9 9 Linux 9 Linux

2022
AWS cb.2xlarge cbn.4xlarge cbn.2xlarge cb.xlarge cb.xlarge chb.xlar
instance
type
vCPU 8 16 4 4 4 4
Memory 16GB 32GB 8GB 8GB 8GB 32GB
Disk Type gp3 gp3 gp3 gp3 gp3 gp3
IOPS 3000 12000 3000 10000 3000 3000
Throughput 125MB/s 1000MB/s 256MB/s 550MB/s 125MB/s 125MB,
Size 100GB 150GB 100GB 100GB 80GB 80GB
Network 2.5 Gbps 15 Gbps 5 Gbps 1.25 Gbps 1.25 Gbps 1.25
bandwidth Gbps
(baseline & 10 Gbps 25 Gbps 25 Gbps 10 Gbps 10 Gbps
burst] 10 Gbp
Benchmark EC2 EC2 EC2 EC2 EC2 EC2
(Geekbench]) cb.2xlarge cbn.4xlarge cbn.2xlarge cb.xlarge cb.xlarge cb.xlar

Client tool

157

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#client-tool
https://browser.geekbench.com/v6/cpu/11135302
https://browser.geekbench.com/v6/cpu/8698288
https://browser.geekbench.com/v6/cpu/6403463
https://browser.geekbench.com/v6/cpu/11610851
https://browser.geekbench.com/v6/cpu/11610851
https://browser.geekbench.com/v6/cpu/11610851

Detail

0s Rocky Linux 9

AWS instance type cbn.xlarge

vCPU 4

Memory 10GB

Disk Type: gp3
IOPS: 3000

Throughput: 125MB/s

Size: 80GB

Network bandwidth Baseline: 5 Gbps

Burst: 10 Gbps

Product information

MetaDefender Core v5.14.2

» Engines:
o Metascan 8: Ahnlab, Avira, ClamAV, ESET, Bitdefender, K7, Quick Heal, VirlT Explorer
o Archive v74.0
o File type analysis v7.4.0

» MDDC Control Center v2.0.0

« MDDC API Gateway v2.0.0

» MDDC File Storage v2.0.0

» PostgreSQL v14.17

» RabbitMQ v3.12.6

e Redis v7.2.

MetaDefender Core settings

General settings
« Turn off data retention
» Turn off engine update

» Scan queue: 1000 (for Load Balancer deployment)

158

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#product-information
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#metadefender-core-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#general-settings

Archive Extraction settings
« Max recursion level: 89999999
e Max number of extracted files: 999999399
» Max total size of extracted files: 88999999
« Timeout: 10 minutes
» Handle archive extraction task as Failed: true

o Extracted partially: true

Metascan settings
o Max file size: 39999999
» Scan timeout: 10 minutes

» Perengine scan timeout: 1 minutes

Advanced settings

RabbitMQ

 RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS=-rabbit consumer_timeout unlimited
default_consumer_prefetch {false,525}

Redis
» redis-cli flushall
» redis-cli config set save "
» redis-cli config set maxmemory 25gb

» redis-cli config set maxmemory-policy volatile-ttl

Performance results

Load-balance deployment vs MDDC deployment

Multiple tests are conducted using 12 MetaDefender Core instances across two deployment types,
MetaDefender Distributed Cluster [MDDC] and Load Balancer, to determine the superiority of the
MDDC in 4 different datasets.

159

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#archive-extraction-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#metascan-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#advanced-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#rabbitmq
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#redis
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#performance-results
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#load-balance-deployment-vs-mddc-deployment

Scenario

Result

Aggressively submitted 2M non-archive files
at a rate of 800 files per second.

Processed Objects per hour
Higheris better

MDDC

Deployment

500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

°

Objects

Total Duration
Loweris better

Deployment

50

°

5
8
8
5

Minutes

Resource utilization

Deployment

WRAM W CPU

160

Scenario Result
Submitted 400 medium archive files at a rate Processed Objects per hour
. Higheris better
of 1files per second.
Deployment
- I
0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000
Objects
Total Duration
Loweris better
Deployment
- I
0 5 10 15 20 25 30 35 40
Minutes
Resource utilization
Deployment

161

®RAM mCPU

Scenario Result

Submitted a mix of 183K non-archive and Processed Objects per hour
medium archive files at a rate of 180 files per e
second.

MDDC

Deployment

°

500,000 1,000,000 1,500,000 2,000,000 2,500,000
Objects

Total Duration
Loweris better

Deployment

°
a
H
&
N
8
»
]

30
Minutes

Resource utilization

Deployment

=RAM mCPU

162

Scenario Result

Submitted 4 large CAB files. Processed Objects per hour

Higheris better

The scenarios replicate 2 different routing weoe
cases of a common Load Balancer.

Deployment LBOneToOne .
LB OneToOne: An ideal routing ensures that
one CAB file is routed to a single MD Core.

LB FourToOne .

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
Objects

LB FourToOne: The worst routing that
delivered four CAB files to a single MD Core. Total Duration

Loweris better

vooc [l

Archive distribution Deptoyment Leonsrone [N

0 100 200 300 400 500 600 700 800

In workflow, setting "Load shared among
MetaDefender Core instances for archive
processing" is enabled.

Minutes

Resource utilization
Load shared among MetaDefender Core instances for archive processing
Applicable to Distributed Cluster deployment, nested files in archive could be
processed in multiple MetaDefender Core instances, recommended when processing

MDDC

Deployment

o

20 40 60 80 100

RAM ®CPU

Scaling out

In the following test scenarios, we conducted experiments on four datasets using 4 and 12 of MD
Core instances in MetaDefender Distributed Cluster [MDDC]), demonstrating the benefits of
increased instance counts.

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#scaling-out

Scenario

Result

Aggressively submitted 2M non-archive files at a

rate of 800 files per second.

Submitted 400 medium archive files at a rate of 1

files per second.

164

Processed Objects per hour
Higheris better

-
MD Core
instances
- I
o 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000
Objects
Total Duration
Loweris better
- -
MD Core
instances
+ I
o 20 40 60 80 100 120 140
Minutes
Resource utilization
b ‘
MD Core
instances
‘ h
o 20 40 60 80 100
%
=RAM mCPU
Processed Objects per hour
Higheris better
- I
MD Core
instances
-
o 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000
Objects
Total Duration
Loweris better
- -
MD Core
instances
+ I
o 20 40 60 80 100 120 140
Minutes
Resource utilization
12
MD Core

instances

°
N
8
IS
5
3
@
3

100

Scenario

Result

Submitted a mix of 189K non-archive and
medium archive files at a rate of 60 files per
second.

Submitted 4 large CAB files.
Archive distribution

In workflow, setting "Load shared among
MetaDefender Core instances for archive
processing" is enabled.

Load shared among MetaDefender Core instances for archive processing
Applicable to Distributed Cluster deployment, nested files in archive could be
processed in multiple MetaDefender Core instances, recommended when precessing
mostly big archive files

165

Processed Objects per hour
Higheris better

MD Core
instances

&

°

200,000 400,000 600,000 800,000 1,000,000
Objects

Total Duration
Loweris better

- I
MD Core
instances

+ I

o 10 20 30 40 50 60 70 80 90
Minutes
Resource utilization

12

MD Core

instances

°
5
3
@
8
IS
5
g
2
8
o
3
@
g
8

Processed Objects per hour
Higheris better

MD Core
instances

°

1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
Objects

Total Duration

Loweris better

- -
MD Core
instances

+ I

o 50 100 150 200
Minutes
Resource utilization

12

MD Core

=RAM mCPU

Log Gathering in MetaDefender
Distributed Cluster

Download support packages

From the web console of MetaDefender Distributed Cluster [MDDC], the administrator can easily
download the support packages of the following services:

+ MDDC Control Center

+ MDDC Identity Service

+ MDDC File Storage

+ MDDC Worker including MDDC API Gateway or MetaDefender Core deployed by the worker.

Please refer to Remote Support Package Gathering for more information.

Collect service logs

Logs from the services Redis, RabbitMQ, and PostgreSQL need to be collected manually.

Redis - Caching Server

o Info

Redis caching server is officially supported on Linux.

1. Run Terminal as root privilege [sudo].

2. Open Redis config file /etc/redis/redis.conf in edit mode e.g.:

bash

$ vi /etc/redis/redis.conf

3. Find and replace logfile directive with your desired location.

bash

167

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#download-support-packages
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-remote-support-package-gathering
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#collect-service-logs
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#redis---caching-server

logfile "<path/to/your/redis/log>.log"

4. Save the file, and restart Redis daemon.

bash

$ sudo systemctl restart redis

5. Find and collect Redis log <path/to/your/redis/log>.log

RabbitMQ - Message Broker Server

Windows

1. Locate and collect RabbitMQ log files that match the pattern
%APPDATA%\RabbitMQ\log\rabbit@<computer name>.log.

2. Locate and collect RabbitMQ upgrade log files that match the pattern
%APPDATA%\RabbitMQ\log\rabbit@<computer name>_upgrade.log.
Linux
1. Run terminal as root privilege [sudo]

2. Run following command to retrieve RabbitMQ log location:

bash

$ rabbitmg-diagnostics -q log_location

3. Access RabbitMQ log folder and find log files:
o rabbit@<computer name>.log

o rabbit@<computer name>_upgrade.log

PostgreSQL - Database Server

Windows
1. Locate and collect log files that match the pattern C:\Program
Files\PostgreSQL\12\data\log with names postgresql-<yyyy-mm-dd>_<HHMMSS>.log
Linux
1. Run terminal as root privilege [sudo]

2. Open the PostgreSQL config file /etc/postgresql/12/main/postgresql.conf in edit
mode e.g.:

168

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#rabbitmq---message-broker-server
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#postgresql---database-server

bash

$ vi /etc/postgresql/12/main/postgresql.conf

3. Find and turn logging_collector directive on :

bash

logging_collector = on

4. Save the file and restart PostgreSQL daemon, e.g.:

bash

$ sudo systemctl restart postgresql

5. Locate and collect log files that match the pattern
/var/lib/postgresql/12/main/log/postgresql-<yyyy-mm-dd>_<HHMMSS>.1log.

169

Release notes

Version 2.4.0
Release date 30 September 2025
Scope Support /readyz APl endpoint, export scan result in JSON format,

export processing history in STIX or CSV format, support grouping and
removing abandoned engine packages, fix eventual crashes of
services

New Features, Improvements and Enhancements

Export scanresult in JSON format

From MetaDefender Distributed Cluster (MDDC] Control Center, users can export scan result in
JSON format.

o \nginx-1.29.0.tar.gz &
R 3 Export result
ALLOWED GNU Zipped Archive - 1.3 MB

No Threat Detected
Workflow Upload Timestamp Processing Timestamp ProcessingTime SHAZS6 (Q) e
Fileprocess Sep 25,2025t 8:08:38PM Sep 25,2025 at B:06:37PM 8,265 ms 109754DFEBES189A7A0CFIDBETIBETDA2DBA95753308F 933F161E525A579A664

Export processing history in STIX or CSV format

Processing history can be exported in STIX or CSV format fromm MDDC Control Center.

OPSWAT. 2. LocAL/admin Jal
MetaDefender
Distributed Cluster
Processing History
oo Q search by file name Advanced v C Refresh & Displaysettings g4 Cleanup ¢ Highlighter | [3 Export history v
88 Dashboard >
Export to STIX
O History v File Name Result FileType Workflow User Instance RequestTim Durationo | Export to CSV
Processing
\ngin.. NoThrea.. GNUZipp.. Fileproc.. LOCAUtest 71 Sep25.2. B8255ms 10975..9A66
Audit Log
\ngin.. NotScan.. Notavail. Fileproc... - 7 Sep25,2. 4ms 10975...9A66
93 Workflow Management v
\ngin.. Sensitive.. GNUZipp.. Fileproc.. LOCAU/a.. 182 Sep24.2.. 20266ms 10975..9A66

Remove abandoned module packages

Abandoned module packages can be selected and removed on web console of Control Center.

170

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/release-notes?mode=print&deployment_id=latest#new-features-improvements-and-enhancements

Customize the system health check

System administrators can enable the health check option and set the minimum number of
required MetaDefender Core instances in the Health Check settings of the MDDC Control Center.

OPSWAT.
MetaDefender
Distributed Cluster

88 Dashboard

€ History

98 Workflow Management
& User Management
B Inventory

& Settings

RESTful API

Settings

a

Security

Health check

2, LoCAUadmin Q1

2 0

DataRetention HealthCheck ~ Export About

@D Enable health check

Minimum number of active MetaDefender Core 1 2

» Introduce a new APl endpoint in MetaDefender Distributed Cluster APl Gateway to verity if

the system is ready for new scan requests GET /readyz.

Introduce a new field, dlp_wait_time, in the response of GET /file/{data_id} API
requested from MetaDefender Distributed Cluster API Gateway.

Include username field in the response of GET /file/{data_id}, GET
/file/batch/{batch_id} and GET /hash/{md5|sha1|sha256|sha512}.

Further Enhancements

Verify the minimum version requirement when adding a new instance of Redis, RabbitMQ,
and PostgreSQL to MetaDefender Distributed Cluster Control Center.

Improve storing scan results from AV engines to MetaDefender Distributed Cluster Data
Lake.

171

Security Enhancements

Upgraded library for vulnerability fixes:
e QOpenSSL 3.5.2

Bug Fixes

o Fixed the issue that caused occasional service crashes when halted.

» Fixed the issue that made it impossible to close a batch if its name contained special
characters.

» Fixed the issue that led to the batch name not appearing in the Ul of MDDC Control Center.
» Fixed the issue that caused the COO engine to fail or time out during installation.

» Fixed the issue that caused the executive report to eventually miss data.

Known Limitations

Details
MetaDefender Core This issue will be resolved in MDDC version 2.5.0.
becomes unlicensed _ '
following the MDDC In version 2.4.0, MetaDefender Core |ns.tance that has already
Worker upgrade deployed and activated successfully with a valid license

becomes unlicensed after its MDDC Worker is upgraded.
Workaround:

« To online activation: follow steps to activate a
MetaDefender Core instance after deployment.

« To offline activation: follow steps to activate a
MetaDefender Core instance with with license file.

172

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/release-notes?mode=print&deployment_id=latest#known-limitations
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-activation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-metadefender-core-instances-with-license-files

API Reference

API| Gateway

API Version: v2.4.0

Developer Guide

This is the API documentation for MetaDefender Distributed Cluster API Gateway Public API. If
you would like to evaluate or have any questions about this documentation, please contact us
via our Contact Us form.

How to Interact with MetaDefender Distributed
Cluster API Gateway using REST API

MetaDefender Distributed Cluster API Gateway is used to submit files for analysis, retrieve
scan results, manage file processing, download processed files, and manage file batches.
OPSWAT recommends using the JSON-based REST API. The available methods are
documented below.

173

https://www.opswat.com/contact
https://www.opswat.com/contact

Note: MetaDefender Distributed Cluster APl doesn't support chunk upload, however is
recommended to stream the files to MetaDefender Distributed Cluster APl Gateway as part of
the upload process.

File Analysis Process

MetaDefender Distributed Cluster is a system with multiple components that work together to
utilize the power of multiple MetaDefender Core instances. The system is designed to handle
large volumes of files and provide high throughput for file analysis. The system can be
deployed in a distributed manner, allowing for horizontal scaling and load balancing across
multiple MetaDefender Core instances.

Below is a brief description of the APl integration flow:

1. Upload a file for analysis to MetaDefender Distributed Cluster API Gateway (POST /file),
which returns the data_id: File Analysis.

2. The following method can be used to retrieve the analysis report:

 Polling: Fetch the result with previously received data_id (GET /file/{data_id} resource)
until scan result belonging to data_id doesn't reach the 100 percent
progress_percentage: (Fetch analysis result)

Note: Too many data_id requests can reduce performance. It is enough to just check every
few hundred milliseconds.

3. Retrieve the analysis results anytime after the analysis is completed with hash for files

174

/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysispost
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysispost
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget

(md5, sha1, sha256, sha512) by calling Fetch analysis result by hash.

¢ The hash can be found in the scan results

4. Retrieve processed file (sanitized, redacted, watermarked, etc.) after the analysis is
complete.

Note: Based on the configured retention policy, the files might be available for retrieval at a
later time.

OPSWAT provides some sample codes on GitHub to make it easier to understand how the
MetaDefender REST API works.

CONTACT

NAME: API Support

EMAIL: feedback@opswat.com

URL: https://github.com/OPSWAT/metadefender-core-openapi3
Terms of service: https://onlinehelp.opswat.com/policies/

175

/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
https://github.com/OPSWAT
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/

Security and Authentication
SECURITY SCHEMES

KEY TYPE DESCRIPTION

apikey apiKey Generated ‘session_id" from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an “apikey™ for API
calls that require authentication.

176

API
1. ANALYSIS

File analysis APls

Submit each file to MetaDefender Distributed Cluster API Gateway individually or group them
in batches. Each file submission will return a data_id which will be the unique identifier used
to retrieve the analysis results.

Note: MetaDefender API doesn't support chunk upload. You shouldn't load the file in memory,
is recommended to stream the files to MetaDefender Distributed Cluster APl Gateway as part
of the upload process.

1.1 POST /file

Analyze File (Asynchronous mode)

Scanning a file using a specified workflow. Scan is done asynchronously and each scan
request is tracked by data id of which result can be retrieved by API Fetch Scan Result.

Note: Chunked transfer encoding (applying header Transfer-Encoding: Chunked) is not
supported on /file API.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

177

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an “apikey" for API
calls that require authentication.

filename string The name of the submitted file

user_agent string user_agent header used to identify (and limit) access to a particular rule.
For rule selection, ‘rule’” header should be used.

rule string Select rule for the analysis, if no header given the default rule will be
selected (URL encoded UTF-8 string of rule name)

batch string Batch id to scan with, coming from Initiate Batch’ (If it is not given, it will
be a single file scan.)

archivepwd string Password for archive (URL encoded UTF-8 string)
Multiple passwords is also supported, format: archivepwdX
* X: Could be empty
* When having value, X must be a number >=1
For example:
* archivepwd1: "fox"
* archivepwd?2: "cow"
* archivepwd3: "bear”

content- string Content encoding of the file. This header is used to specify the encoding

encoding of the file content.
The value should be a valid content encoding type, such as "base64",
llgzipll.
This header is optional and can be omitted if the encoding is not
applicable.

metadata json Could be utilized for:

* Additional parameter for pre-defined post actions and external scanners
(as a part of STDIN input).

* Customized macro variable for watermarking text (Proactive DLP engine
feature).

* Additional context / verbose information for each file submission
(appended into JSON response scan result).

It is strongly recommended to apply URL encoding before sending

‘metadata’ to Metadefender Core to prevent unexpected issues related to
encoding errors or unsafe characters.

178

NAME TYPE EXAMPLE DESCRIPTION
engines- json Since MetaDefender Core 5.0.0, preferred context / verbose information
metadata can be sent to the engines.
Please see the below pages for the details:
* [File Type engine](https://docs.opswat.com/mdcore/utilities-engines/
supported-engines-metadata) (supported since Core 5.2.1)
* [Archive engine](https://docs.opswat.com/mdcore/utilities-engines/
supported-engines-metadata-header) (supported since Core 5.4.1)
* [Deep CDR](https://docs.opswat.com/mdcore/deep-cdr/supported-
engines-metadata-json)
* [Proactive DLP](https://docs.opswat.com/mdcore/proactive-dip/
supported-engines-metadata-json)
global- integer This custom global timeout (in seconds) will override the global timeout
timeout predefined in corresponding workflow rule.
RESPONSE

STATUS CODE - 200: Successful file submission

RESPONSE MODEL - application/json

NAME TYPE

DESCRIPTION

OBJECT WITH BELOW STRUCTURE

data_id*

EXAMPLE:

{
}

"data_id":

"61dffeaa728844adbf49eb090edecelde”

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

NAME TYPE

DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 411: Content-Length header is missing from the request.

179

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Missing Content-Length header."
}

STATUS CODE - 422: Body input is empty.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{
"err": "File is empty."

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

STATUS CODE - 503: Server is too busy. Try again later.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Server is too busy. Try again later.”

}

180

1.2 GET /file/{data_id}

Fetch Analysis Result

Retrieve scan results.

Scan is done asynchronously and each scan request is tracked by a data ID.

Initiating file scans and retrieving the results need to be done using two separate API calls.
This request needs to be made multiple times until the scan is complete. Scan completion
can be traced using scan_results.progress_percentage value from the response.

Note: The REST API also supports pagination for archive file result. A completed response
description with archive detection:

e extracted_files: information about extracted files
e files_extracted_count: the number of extracted files
e files_in_archive: array of files in archive
e detected_by: number of engines reported threat
e scanned_with: number of engines used for scanning the file

« first_index: it tells that from which file (index of the file, 0 is the first) the result JSON
contains information about extracted files. (default=0)

e page_size: it tells how many files the result JSON contains information about
(default=50). So by default, the result JSON contains information about the first 50
extracted files.

e worst_data_id: data id of the file that has the worst result in the archive

e scan_results
* last_file_scanned (stored only in memory, not in database): If available, the name of the
most recent processed file

181

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*data_id string Unique submission identifier.
Use this value to reference the submission.

QUERY PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
first integer The first item order in the list child files of archive file
size integer The number of items to be fetched next, counting from the item order indicated in
first header
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.
user_agent string user_agent header used to identify (and limit) access to a particular rule. For
rule selection, ‘rule” header should be used.
RESPONSE

STATUS CODE - 200: Entire analysis report generated by MetaDefender Core

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
data_id
dip_info
certainty ALLOWED:

errors
filename

182

NAME TYPE DESCRIPTION

hits object
cecn object
display_name string Credit Card Number, Social Security Number, or in case of RegEx, the name of
the rule that has been given by the user
hits array
after string The context after the matched data.
before string The context before the matched data.
certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
The text version of "certainty_score", possible values:
*Very Low’
*Low
* "Medium’
* “High®
* "Very High
certainty_score integer |s defined by the relevance of the given hit in its context. It is calculated
based on multiple factors such as the number of digits, possible values:
[0-100]
hit string The matched data.
location string The location of the hit that is found in a file.
severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): can be 0 (detected) or 1 (suspicious).
tryRedact boolean |ffile was redacted or not.
metadata_removal object
result enum ALLOWED: removed, not removed, failed to remove
Result of the metadata removal process, possible values:
* ‘removed
*“not removed’
* “failed to remove’
redact object
result enum ALLOWED: redacted, not redacted, failed to redact
Result of the redaction process, possible values:
* “redacted’

* 'not redacted”
* *failed to redact’

severity enum ALLOWED: 6, 1

(NOTE: this field is deprecated): represents the severity of the data loss,
possible values:

*°0" - Certainly is data loss

* 1" - Might be data loss

verdict enum ALLOWED: 6, 1, 2, 3, 4
The overall result for the scanned file. Possible values:
*'0" - Clean
**1" - Found matched data
* 2" - Suspicious
* 3" - Failed
**4" - Not scanned

NAME TYPE DESCRIPTION
watermark object
result enum ALLOWED: added, not added, failed to add
Result of the watermarking process, possible values:
*“added
* "not added’
* *failed to add’
download_info object
error_detail string Revealed detailed reason why the download failed.
progress number QOnly applicable when "status” is "Downloading’, indicates download finished

percentage, in a range of [1, 99].

* Once hitting 100, the status will be changed to "Download Success’.

* or other problematic status (‘Download Cancelled’, ‘Download Failed’) if the
download stopped unexpectedly.

184

NAME TYPE DESCRIPTION

status string |ndicates download status, which could be either
- 'Downloading’
- Check “progress’ key value for actual download percentage
json
"download_info": {
"progress": 7,
"status”: "Downloading”,
"url": "http://192.168.200.97:8080/5gb.zip"

.

- ‘Download Success’

“json

"download_info": {

"status": "Download Success",

"url": "https://secure.eicar.org/eicar.com"

.

- "Download Failed"

- Check “error_detail key value for an error explanation
json

"download_info": {

"error_detail": "Connection error”,

"status”: "Download Failed",

"url": "http://192.168.200.97:8080/2gb.zip"

}

- "Download Timeout®

- Expecting to occur when the download progress takes longer than what time
window allowed in MetaDefender Core's pre-configured setting under
workflow rule (under "SCAN" tab)

“json

"download_info": {

"status": "Download Timeout",

"url": "http://192.168.200.97:8080/2gb.zip"

.

- ‘Download Cancelled’

- Expecting to occur when user explicitly cancelled that file scan request, or
batch request that the scan belongs to

“json

"download_info": {

"status": "Download Cancelled",

"url": "http://192.168.200.97:8080/5gb.zip"

.

url string Original download link which was specified in HTTP(S) request's
“downloadfrom’ header

extraction_info object

decrypted_status enum ALLOWED: Success, Failed
Indicate that decryption phase is successful or not.

err_category string Error category

err_code integer Error code

err_details string Error message

is_encrypted_file boolean |ndicate if file is password-protected or not.

NAME TYPE DESCRIPTION

file_info

display_name

file_size

file_type

file_type_description

md5

shal

sha256

sha512

signer_infos
digest_algorithm
digest_encryption_algorithm
issuer
serial_number
vendor_name

version

type_category
receive_data_timestamp

upload_time
upload_timestamp

filetype_info
file_info*

description*
detected_by
encrypted*
extensions*
grouplD*
grouplDs*
group_description
likely_type_ids

186

NAME TYPE

DESCRIPTION

score*
typelD*
type*
typelD*
type_ids*
final_verdict
verdict*

verdict_explanation*
is_file_type_mismatch
other_detections
result_template_hash
spoofing_info
detection_result
result_explanation
result_overview
opswatfilescan_info
process_info
blocked_reason
blocked_reasons
file_type_skipped_scan
hash_time
outdated_data
processing_time
processing_time_details
av_scan_time
cdr_time
dip_time
extraction_time
filetype_time
opswatfilescan_time
others_time

ALLOWED:

187

NAME TYPE

DESCRIPTION

parse_dgsg_time

vul_time

yara_time

filetype_wait_time
profile
progress_percentage

queue_time

result
user_agent
username
verdicts
post_processing
actions_failed
actions_ran
converted_destination
converted_to
copy_move_destination
sanitization_details
cdr_wait_time
description
details
action*

count
details
action

count

object_details

object_name
description
file_name
object_details
object_name*

ALLOWED:

ALLOWED:

188

NAME TYPE DESCRIPTION
failure_category string peep CDR errors are classified into different categories.
For more details, please find [Troubleshooting sanitization failures](https://
docs.opswat.com/mdcore/deep-cdr/troubleshooting-sanitization-failures)
result enum ALLOWED: Sanitized, Sanitized failed, Sanitized skipped
The result of the CDR process.
- **Sanitized**: the file was successfully sanitized.
- **Sanitized failed**: the file could not be sanitized due to an error during the
process.
- **Sanitized skipped**: the file was skipped from sanitization. Common
reasons include the file being digitally signed or other policy-based
exclusions.
result_template_hash String The hash value of the result template, which is used for displaying results on
the Core Ul and for internal communication between MetaDefender Core and
the Deep CDR engine.
This value is intended for system use only and is not required for external
integration.
sanitized_file_info object
file_size integer gize of sanitized file in bytes.
sha256 string SHA256 hash of sanitized file.
verdict enum ALLOWED: blocked, allowed
The verdict of the CDR process.
- **plocked**: the file is recommended for blocking by Deep CDR.
- **allowed**: the file is recommended for allowing by Deep CDR as it found
no reason to recommend blocking it.
verdict_explanations array
scan_results object
data_id string Data ID of the requested file
progress_percentage integer Track analysis progress until reaches 100.
scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,

Whitelisted, Blacklisted, Exceeded Archive Depth, Not
Scanned, Encrypted Archive, Exceeded Archive Size,
Exceeded Archive File Number, Password Protected
Document, Exceeded Archive Timeout, Mismatch, Potentially
Vulnerable File, Cancelled, Sensitive Data Found, Yara
Rule Matched, Potentially Unwanted, Unsupported File
Type, Extraction Failed, Scan Failed, Suspicious Verdict
by Sandbox, Likely Malicious Verdict by Sandbox,
Malicious Verdict by Sandbox, Blocked Verdict by Sandbox,
Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by
SBOM, Blocked Verdict by SBOM, Blocked by Post Action,
Known Bad, Known Good, Unknown, Allowed Verdict by COO,
Blocked Verdict by C00, Unknown Verdict by C00, In
Progress, Skip Processing Fast Symlink

The overall scan result as string

NAME TYPE DESCRIPTION

scan_all_result_i enum ALLOWED:©, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

start_time string Timestamp when the scanning process starts.
total_avs integer Total number of scanning engines used as part of this analysis.
total_time integer Total time elapsed during scan (in milliseconds).
scan_details object
ClamAvV object
def_time string The database definition time for this engine
eng_id string The unique identification string for the engine
location string where this engine is deployed (local/remote).
scan_result_i integer gcan result as index in the Processing Results table
scan_time integer The time elapsed during scan with this engine (in milliseconds).
threat_found string The threat name, IF scan result is Infected or Suspicious. Otherwise empty
string or error message from the engine.
wait_time integer Time elapsed between sending file to Core and receiving the result from the
engine (in milliseconds).
vulnerability_info object
result object
code integer The result code for vulnerability check, 0 means a successful check
hash string Thefile's SHA1 hash value
method enum ALLOWED: 50700
The method used by OESIS Framework, it should be 50700 every time.
timestamp string Timestamp of the request issued
timing integer The vulnerability check's duration in milliseconds
detected_product object
has_kb boolean |ndicates whether any KBs or MSBs exist for this hash
has_vulnerability boolean |ndicates whether any vulnerabilities have been associated with the particular
product
is_current boolean Trye if this product's patch level is current, defaults to true
product object
id integer The OPSWAT product id
name string The product name
remediation_link string A link where product updates or patches can be obtained

TYPE

DESCRIPTION

severity

sig_name
signature
vendor
id
name
version
version_data
count_behind
feed_id
version
vulnerabilites
description
details
cpe
cve
cvss
access-complexity
access-vector
authentication
availability-impact

confidentiality-
impact

generated-on-
epoch

integrity-impact
score
source

cwe

last_modified_epoch

ALLOWED:

191

NAME TYPE DESCRIPTION

published-epoch

references
severity ALLOWED:

severity_index

static_id

verdict

yara
hits
verdict ALLOWED:

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json

192

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

1.3 GET /hash/{md5|shal|sha256|sha512}

Fetch Analysis Result By Hash

Retrieve analysis result by hash

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*md5 | shal|sha256|sha512 string Hash value to search. This can be md5, sha1, sha256, sha512
QUERY PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
first integer The first item order in the list child files of archive file
size integer The number of items to be fetched next, counting from the item order indicated in
first header
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an “apikey" for API
calls that require authentication.
rule string Select rule for the analysis, if no header given the default rule will be

selected (URL encoded UTF-8 string of rule name)

193

NAME TYPE EXAMPLE DESCRIPTION

selfonly boolean Useful to archive hash lookup.

Allow specifying to only perform hash lookup against the original archive
file self only,
and skip searching all child files result within the original archive.

Default value is false.

timerange integer Scoping down the recent number of hours that hash lookup task should
start from till now,
instead of searching the entire scan history in MetaDefender Core
database.

Default value is 0. That means no time scope.

include- boolean False (default): API will return "Not Found" if the verdict is in progress.
inprogress
True:
If the queried hash has a completed processing result before, API will
return the completed processing result.
If this hash doesn't have any completed processing result, APl will return
this In-progress result.

RESPONSE

STATUS CODE - 200: Get information of file

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
data_id
dlp_info

certainty ALLOWED:

errors
filename

hits
ccn

194

NAME TYPE DESCRIPTION

display_name string Credit Card Number, Social Security Number, or in case of RegEx, the name of
the rule that has been given by the user
hits array

after string The context after the matched data.

before string The context before the matched data.

certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
The text version of "certainty_score", possible values:
*Very Low®
*Low’
* *Medium®
* “High®
*Very High

certainty_score integer |s defined by the relevance of the given hit in its context. It is calculated
based on multiple factors such as the number of digits, possible values:
[0-100]

hit string The matched data.

location string The location of the hit that is found in a file.

severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): can be 0 (detected) or 1 (suspicious).

tryRedact boolean |ffile was redacted or not.

metadata_removal object
result enum ALLOWED: removed, not removed, failed to remove
Result of the metadata removal process, possible values:
* ‘removed’
* “not removed
* “failed to remove’
redact object
result enum ALLOWED: redacted, not redacted, failed to redact

Result of the redaction process, possible values:
* ‘redacted’

* 'not redacted”
* *failed to redact’

severity enum ALLOWED: 6, 1

(NOTE: this field is deprecated): represents the severity of the data loss,
possible values:

*°0" - Certainly is data loss

*'1" - Might be data loss

verdict enum ALLOWED: 6, 1, 2, 3, 4
The overall result for the scanned file. Possible values:
*'0" - Clean
**1" - Found matched data
* 2" - Suspicious
* 3" - Failed
**4" - Not scanned

watermark object

NAME TYPE DESCRIPTION
result enum ALLOWED: added, not added, failed to add
Result of the watermarking process, possible values:
* "added’
* 'not added"
* “failed to add"
download_info object
error_detail string Revealed detailed reason why the download failed.
progress number only applicable when "status” is “Downloading’, indicates download finished
percentage, in a range of [1, 99].
* Once hitting 100, the status will be changed to "Download Success’.
* or other problematic status (‘Download Cancelled’, ‘Download Failed’) if the
download stopped unexpectedly.
status string |ndicates download status, which could be either

- "Downloading’

- Check “progress’ key value for actual download percentage
json

"download_info": {

"progress": 7,

"status”: "Downloading’,

"url": "http://192.168.200.97:8080/5gb.zip"

5.

- ‘Download Success’

“json

"download_info": {

"status": "Download Success",

"url": "https://secure.eicar.org/eicar.com"

5

- 'Download Failed

- Check “error_detail key value for an error explanation
“json

"download_info": {

"error_detail": "Connection error",

"status": "Download Failed",

"url": "http://192.168.200.97:8080/2gb.zip"

5.

- ‘Download Timeout™

- Expecting to occur when the download progress takes longer than what time
window allowed in MetaDefender Core's pre-configured setting under
workflow rule (under "SCAN" tab)

“json

"download_info": {

"status": "Download Timeout",

"url": "http://192.168.200.97:8080/2gb.zip"

- ‘Download Cancelled’

- Expecting to occur when user explicitly cancelled that file scan request, or
batch request that the scan belongs to

“json

"download_info": {

"status": "Download Cancelled",
"url": "http://192.168.200.97:8080/5gb.zip"
}

NAME TYPE DESCRIPTION
url

extraction_info
decrypted_status ALLOWED:

err_category

err_code

err_details

is_encrypted_file

file_info

display_name

file_size

file_type

file_type_description

md5

sha1

sha256

sha512

signer_infos
digest_algorithm
digest_encryption_algorithm
issuer
serial_number
vendor_name

version

type_category
receive_data_timestamp

upload_time
upload_timestamp

filetype_info
file_info*

197

NAME TYPE DESCRIPTION

description*
detected_by
encrypted*
extensions*
grouplD*
grouplDs*
group_description
likely_type_ids
score*
typelD*
type*
typelD*
type_ids*
final_verdict
verdict* ALLOWED:

verdict_explanation*
is_file_type_mismatch
other_detections
result_template_hash
spoofing_info
detection_result
result_explanation
result_overview
opswatfilescan_info
process_info
blocked_reason
blocked_reasons
file_type_skipped_scan
hash_time
outdated_data
processing_time
processing_time_details
av_scan_time

198

NAME TYPE DESCRIPTION
cdr_time integer peep CDR engine's sanitization time.
dlp_time integer proactive DLP engine's processing time.
extraction_time integer Archive extraction engine's processing time.
filetype_time integer FileType engine's processing time.
opswatfilescan_time integer OPSWAT Filescan engine's processing time.
others_time integer Total time elapsed for following processing tasks in the product (in
milliseconds):
* Decryption time (if receiving an encrypted file)
* External scanner (if configured)
* Post action (if configured)
* Other internal processing time among components in the product
parse_dgsg_time integer Dpijgital signature analyzing time.
vul_time integer vuylnerability engine's lookup time.
yara_time integer YARA engine's processing time.
filetype_wait_time integer FileType engine's wait time.
profile string The used rule name.
progress_percentage integer percentage of processing completed (from 1-100).
queue_time integer Total time elapsed for file processing task was waiting in MetaDefender
Core’s queue until being picked up (queue_time = start_time -
upload_timestamp) (in milliseconds).
result string The final result of processing the file (Allowed / Blocked / Processing).
user_agent string |dentifier for the REST Client that calls the API.
username string User identifier who submitted scan request earlier.
verdicts array
post_processing object
actions_failed string Empty string if no action failed or list of failed actions, separated by "|".
actions_ran string Ljst of successful actions, separated by "|". Empty string if otherwise.
converted_destination string Contains the name of the sanitized file.
converted_to string Contains target type name of sanitization.
copy_move_destination string Contains target type name of sanitization.
sanitization_details object
cdr_wait_time integer The time in milliseconds that the CDR process took to complete.
description string Action was successful or not.
details array
action* enum ALLOWED: sanitized, removed
The type of action that was performed
count integer The number of objects that were sanitized/removed.

NAME TYPE DESCRIPTION
details object
action enum ALLOWED: sanitized, removed
The type of action that was performed
count integer The number of objects that were sanitized/removed.
object_details array
object_name string The object type that was sanitized/removed.
description string Action was successful or not.
file_name string |f an embedded file was sanitized.
object_details array
object_name* string The object type that was sanitized/removed.
failure_category string Deep CDR errors are classified into different categories.
For more details, please find [Troubleshooting sanitization failures](https://
docs.opswat.com/mdcore/deep-cdr/troubleshooting-sanitization-failures)
result enum ALLOWED: Sanitized, Sanitized failed, Sanitized skipped
The result of the CDR process.
- **Sanitized**: the file was successfully sanitized.
- **Sanitized failed**: the file could not be sanitized due to an error during the
process.
- **Sanitized skipped**: the file was skipped from sanitization. Common
reasons include the file being digitally signed or other policy-based
exclusions.
result_template_hash string The hash value of the result template, which is used for displaying results on
the Core Ul and for internal communication between MetaDefender Core and
the Deep CDR engine.
This value is intended for system use only and is not required for external
integration.
sanitized_file_info object
file_size integer gize of sanitized file in bytes.
sha256 string SHA256 hash of sanitized file.
verdict enum ALLOWED: blocked, allowed
The verdict of the CDR process.
- **blocked**: the file is recommended for blocking by Deep CDR.
- **allowed**: the file is recommended for allowing by Deep CDR as it found
no reason to recommend blocking it.
verdict_explanations array
scan_results object
data_id string Data ID of the requested file
progress_percentage integer Track analysis progress until reaches 100.

NAME

TYPE

DESCRIPTION

scan_all_result_a

scan_all_result_i

start_time
total_avs
total_time
scan_details
ClamAvV
def_time
eng_id
location
scan_result_i
scan_time
threat_found

wait_time

vulnerability_info
result
code
hash
method

timestamp

enum

enum

string
integer
integer
object
object
string
string
string
integer
integer

string

integer

object
object
integer
string

enum

string

ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not
Scanned, Encrypted Archive, Exceeded Archive Size,
Exceeded Archive File Number, Password Protected
Document, Exceeded Archive Timeout, Mismatch, Potentially
Vulnerable File, Cancelled, Sensitive Data Found, Yara
Rule Matched, Potentially Unwanted, Unsupported File
Type, Extraction Failed, Scan Failed, Suspicious Verdict
by Sandbox, Likely Malicious Verdict by Sandbox,
Malicious Verdict by Sandbox, Blocked Verdict by Sandbox,
Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by
SBOM, Blocked Verdict by SBOM, Blocked by Post Action,
Known Bad, Known Good, Unknown, Allowed Verdict by COO,
Blocked Verdict by C00, Unknown Verdict by CO00, In
Progress, Skip Processing Fast Symlink

The overall scan result as string

ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 255, 1014

The overall scan result as index in the Processing Results table.

Timestamp when the scanning process starts.
Total number of scanning engines used as part of this analysis.

Total time elapsed during scan (in milliseconds).

The database definition time for this engine

The unique identification string for the engine

Where this engine is deployed (local/remote).

Scan result as index in the Processing Results table

The time elapsed during scan with this engine (in milliseconds).

The threat name, IF scan result is Infected or Suspicious. Otherwise empty
string or error message from the engine.

Time elapsed between sending file to Core and receiving the result from the
engine (in milliseconds).

The result code for vulnerability check, 0 means a successful check

The file's SHA1 hash value

ALLOWED: 50700
The method used by OESIS Framework, it should be 50700 every time.

Timestamp of the request issued

201

NAME TYPE DESCRIPTION
timing integer The vulnerability check's duration in milliseconds
detected_product object
has_kb boolean |ndicates whether any KBs or MSBs exist for this hash
has_vulnerability boolean |ndicates whether any vulnerabilities have been associated with the particular
product
is_current boolean Trye if this product's patch level is current, defaults to true
product object
id integer The OPSWAT product id
name string The product name
remediation_link string A link where product updates or patches can be obtained
severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:
*LOW'
* 'MODERATE’
*IMPORTANT"
* CRITICAL’
* "NOT_AVAILABLE’
* "UNKNOWN®
sig_name string product signature descriptor
signature integer QPSWAT signature id
vendor object
id integer The OPSWAT vendor id
name string The vendor name
version string The installed product version
version_data object
count_behind integer The number of patches behind of the installed product
feed_id integer The remote feed ID used to determine patch level
version string The current version of the product in the remote feed
vulnerabilites array
description string A text description of the specific vulnerability
details object
cpe string A CPE product reference
cve string A CVE identification string
CVSS object
access-complexity string A cvssaccess-complexity descriptor
access-vector string A CVSS access-vector descriptor
authentication string A CVSS authentication descriptor

202

NAME TYPE DESCRIPTION
availability-impact ~ string A cvss availability impact descriptor
confidentiality- string A CVSS confidentiality impact descriptor
impact
generated-on- string Anepoch timestamp indicating CVSS generation time
epoch
integrity-impact string A CVSS integrity impact descriptor
score string A CVSS 10-point severity score
source string A CVSS source descriptor
cwe string A CWE group identification string
last_modified_epoch string ancpoch timestamp indicating source last update time
published-epoch string Anepoch timestamp indicating source publishing time
references array
severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:
*LOW
* *MODERATE"
*IMPORTANT"
* "CRITICAL’
* "NOT_AVAILABLE®
* "UNKNOWN®
severity_index integer A5 point scale numerical description of Severity level with 5 being greatest
and 0 being unknown
static_id integer An OPSWAT identifier for the vulnerability
verdict integer The vulnerability check's duration in milliseconds
*°0" - No Vulnerability Found
**1" - Vulnerability Found
* 3" - Failed
*'16" - Processing Timed Out
yara object
hits object
verdict enum ALLOWED: 6, 1, 2, 3, 4

The overall result for the analyzed file. Value will be one of the following:

| index | status |

|
|0 | Clean |

|1 | Found matched data |
|2 | Suspicious |

|3 | Failed |

| 4 | Not scanned |

STATUS CODE - 404: Invalid hash format

1.4 GET /file/rules

Fetching Available Analysis Rules

Retrieve all available rules with their custom configurations. Fetching available processing
rules.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.
Only those rules are returned, that:
* Match the apikey's role sent using the apikey header, or
* Are not restricted to a specific role.
user_agent string The user agent string value sent in the header (specified by the client).
Only those rules are returned, that:
* Match the client's user agent sent using the user_agent header, or
* Are not restricted to a specific user agent.
For details see KB article [What are Security Policies and how do | use them?]
(https://onlinehelp.opswat.com/corev4/
What_are_Security_Policies_and_how_do_I_use_them_.html).
RESPONSE

STATUS CODE - 200: Returns the list of available rules.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE

max_file_size

name

global_timeout
value

enabled

204

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

1.5 GET /file/converted/{data_id}

Download Sanitized Files

Retrieve sanitized file based on the data_id

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*data_i string g81071abae27be4d63859c55d9e0ed0135 The data_id comes from the result of “Analyze a
d file’. In case of sanitizing the content of an

archive, the data_id of contained file can be
found in “Fetch analysis result".

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Returns the sanitized content.

RESPONSE MODEL - application/octet-stream

205

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

1.6 GET /file/download/{data_id}

Download either sanitized files or DLP processed files

Retrieve sanitized file based on the data_id. In case there's no sanitized file, and DLP
processed file is available, user will retrieve DLP processed file.

206

REQUEST
PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION
*data_i string g81071abae27be4d63859c55d9e0ed0135 The data_id comes from the result of “Analyze a
d file’. In case of sanitizing the content of an

archive, the data_id of contained file can be
found in “Fetch analysis result".

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Returns the sanitized or DLP processed content.
RESPONSE MODEL - application/octet-stream
STATUS CODE - 404: File could not be found

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "File could not be found"

}
STATUS CODE - 405: The user has no rights for this operation.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

207

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

1.7 POST /file/{data_id}/cancel

Cancel File Analysis

When cancelling a file analysis, the connected analysis (e.g. files in an archive) that are still in
progress will be cancelled also.

The cancelled analysis will be automatically closed.

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*data_id string Unique submission identifier.
Use this value to reference the submission.
HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

208

RESPONSE

STATUS CODE - 200: Analysis was sucessfully cancelled.
RESPONSE MODEL - application/json
EXAMPLE:
{
"<<data_id>>": "cancelled"
}
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 404: Data ID not found (invalid id) or Requests resource was not found

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json

209

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

210

2. AUTH

Authentication APIs

User authentication is done via username & password.

2.1 POST /login

Login

Initiate a new session. Required for using protected REST APlIs.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
user*
password*
EXAMPLE:
{
"user": "admin",
"password”: "admin"
}
RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
oms-csrf-token*

session_id*

STATUS CODE - 403: Invalid credentials

211

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Failed to login"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

2.2 POST /logout

Logout

Destroy session for not using protected REST APlIs.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

212

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

response*

STATUS CODE - 400: Bad Request.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

errx

STATUS CODE - 403: Invalid user information.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

errx

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

213

3. BATCH

Group the analysis requests in batches. Supported with endpoints: MetaDefender Distributed
Cluster API Gateway.

3.1 POST /file/batch

Initiate Batch

Create a new batch and retrieve the batch_id

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.
rule string Select rule for the analysis, if no header given the default rule will be selected
(URL encoded UTF-8 string of rule name)
user_agent string user_agent header used to identify (and limit) access to a particular rule. For
rule selection, ‘rule’ header should be used.
user-data string Name of the batch (max 1024 bytes, URL encoded UTF-8 string).
RESPONSE

STATUS CODE - 200: Batch created successfully.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
batch_id*

EXAMPLE:

214

{
"batch_id": "74c85f475147439bac4d33b181853923"

}
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header"

}

STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
)3

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

3.2 POST /file/batch/{batchId}/close

Close Batch

215

The batch will be closed and files can no longer be added to the current batch.

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*batchId string The batch identifier used to submit files in the batch and to close the batch.
HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch successfully closed.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
batch_files
batch_count
files_in_batch
data_id
detected_by
display_name
file_size
file_type
file_type_description
process_info
blocked_reason
progress_percentage
result
verdicts

216

NAME TYPE DESCRIPTION
progress_percentage integer Track analysis progress until reaches 100.
scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by C00, Blocked Verdict
by C00, Unknown Verdict by C00, In Progress, Skip Processing
Fast Symlink
The overall scan result as string
scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.
scanned_with integer The total number of engines used to analyze this file.
first_index integer The starting index in the batch. Used for pagination.
page_size integer The number of entries per page.
batch_id string The batch unique identifer
is_closed boolean The batch status (open/close).
process_info object
blocked_reason string Pprovides the reason why the file is blocked (if so).
file_type_skipped_scan boolean |ndicates if the input file's detected type was configured to skip scanning.
profile string The used rule name.
result string The final result of processing the file (Allowed / Blocked / Processing).
user_agent string |dentifier for the REST Client that calls the API.
username string yser identifier who submitted scan request earlier.
scan_results object
batch_id string The batch unique identifer

217

NAME TYPE DESCRIPTION

scan_all_result_a ALLOWED:

scan_all_result_i ALLOWED:

start_time
total_avs

total_time
user_data

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

218

{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

3.3 GET /file/batch/{batchId}

Status of Batch Analysis

Retrieve status report for the entire batch

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

219

QUERY PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

first integer The first item order in the list of files in this batch

size integer The number of items to be fetched next, counting from the item order indicated in
first header

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch progress paginated report (50 entries/page).

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
batch_files
batch_count
files_in_batch
data_id
detected_by
display_name
file_size
file_type
file_type_description
process_info
blocked_reason
progress_percentage
result
verdicts
progress_percentage

220

NAME

TYPE

DESCRIPTION

scan_all_result_a

scan_all_result_i

scanned_with
first_index
page_size
batch_id
is_closed
process_info
blocked_reason
file_type_skipped_scan
profile
result
user_agent
username
scan_results
batch_id

enum

enum

integer
integer
integer
string
boolean
object
string
boolean
string
string
string
string
object

string

ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by CO00, Blocked Verdict
by CO0, Unknown Verdict by COO, In Progress, Skip Processing
Fast Symlink

The overall scan result as string

ALLOWED:0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 4@, 41, 42, 43, 255, 1014

The overall scan result as index in the Processing Results table.

The total number of engines used to analyze this file.
The starting index in the batch. Used for pagination.
The number of entries per page

The batch unique identifer

The batch status (open/close).

Provides the reason why the file is blocked (if o).

Indicates if the input file's detected type was configured to skip scanning.
The used rule name.

The final result of processing the file (Allowed / Blocked / Processing).
Identifier for the REST Client that calls the API.

User identifier who submitted scan request earlier.

The batch unique identifer

221

NAME TYPE DESCRIPTION

scan_all_result_a ALLOWED:

scan_all_result_i ALLOWED:

start_time
total_avs

total_time
user_data

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

222

{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

3.4 GET /file/batch/{batchId}/certificate

Download Signed Batch Result

Download digitally signed status report for the entire batch

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

223

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Signed batch result and certificate are sent back in response body (YAML format).
RESPONSE MODEL - application/x-yaml
EXAMPLE:

"--- batch_id: 092876200fb54cfb80b6e3332c410ae9 user_data: the user data from the header from
batch creation cert_shal_fingerprint: <some cert serial value> batch_files:\n batch_count:
1\n files_in_batch:\n - data_id: 9112b225f0634f189a2bb46ec1a7826f\n display_name:
New%20Text%208Document . txt\n file_size: 5\n scan_all_result_i: 0\n process_info:\n
blocked_reason:\n result: Allowed\n md5: 42b130c3ce46e058f30712838cebf420\n shal:
ed94baf55ca851055fb76045f6949bca2f865605\n sha256:
f4191b3ecbce93aaf712919a38e52815¢5da9c91d2b141df928bc8bch5cbb8e3\n sha512: \"\"\n

vulnerabilities:\n - cve: CVE-2021-45463\n cvss:\n score: 6.8\n
cvss_3_0:\n base_score: 7.8\n - cve: CVE-2018-12713\n cvss:\n
score: 6.4\n cvss_3_0:\n base_score: 9.1\nprocess_info:\n blocked_reason:\n

file_type_skipped_scan: false\n profile: File scan\n result: Allowed\n user_agent:
webscan\nscan_results:\n scan_all_result_a: No Threat Detected\n scan_all_result_i: ©\n
start_time: 2017-05-23T11:22:03.010Z\n total_avs: 14\n total_time: 995\n...\n--- signature:
881d22220c4cab557d7¢7d5¢5794d53a8a2780997¢cd65b27b6e7f1c099a15ded3dbch5edbeaea7aata6099fab37be
07017b39e3e3a7d66c550f44eb59a096c54d5b9555¢b28198546fbec57¢33b717751d333a09733d95dd876€2798d0
44c8caef828f4352b91f9a6d057253bb1a9461e0e0eBbf4313a80895998d645bebc818411f13499589c80ffc4e8a19
0d1ec9b3e4126d86659d303b0Be1f22d9289¢c9¢c4671d35532b55ad4620e048a78bb4065b573897da63efdd5f036692¢
934a82d9bdc9b9862e7fea5e8abeeb1444be0689d50373¢c5c0632484950c0feB337ed5f91bdf26986f7cff8aa3431
bf4bc948fc127c16ba13ec679fe9f67e7586075c1f467454fa8cf40e9cd501291¢c95d862eb1614477¢c17d1711294fF
0ff2b3a1140bd53dbd1fbb0846af6062e9ed4e2e1a09af3448503ed11e342164e535fc268bf7d8fbc28ed946cd2bb8
eaB75f2295d2fa8392076d41608c3b5decf8fab3a5ec7de190f07583331e0517e5f361735¢cd59326622dc8bB7b10a
464028de781a063e408f918c1d5534329140f4e4dc1a717d808d6784410410b00d36cb9a345f5bbc11falc58ee28f
8e7b863f3ea2c923ec5fb2ac29eaad4ddcd6d9dfd3f16a97f207dc2858410a577¢c7f4a92ff01bad3229f5fcdb08e2
1df9869a113272aa9d96bfdfe8bfb3a50414c174e16a3504e5780¢c2718779b07572985461f287ef7ea86e67510d48a
8 certificate: |\n ----- BEGIN CERTIFICATE----- \n
MIIGJzCCBA+gAwIBAgIBATANBgkghkiG9wOBAQUFADCBsjELMAKGATUEBhMCR1IxX\n

DzANBgNVBAgMBkFsc2F jZTETMBEGATUEBWwWKU3RYyYXNib3VyZzEYMBYGATUECgwP\n
d3d3LmzZyZWVsYW4ub3JnMRAWDgYDVQQLDAdmcmV1bGFuMS@wKwYDVQQDDCRGemV1\n
bGFUIFNhbXBsZSBDZXJ@aWZpY2F@ZSBBdXRob3JpdHkxIjAgBgkghkiG9w@BCQEW\n
E2NvbnRhY3RAZNJ1ZWxhbi5vemcwHhcNMTIWNDI3MTAzZMTE4WhcNMjIWNDITMTAZ\n
MTE4WjB+MQswCQYDVQQGEwJGUjEPMABGATUECAWGQWxzYWNIMRgwFgYDVQQKDA93\n
d3cuznJ1ZWxhbi5vcemcxEDAOBgNVBAsSMB2ZyZWVsYW4xDjAMBgNVBAMMBWF saWN1\n
MSIWIAYJKoZIhvcNAQkBFhNjb250YWNOQGZYyZWVsYW4ub3JnMIICIjANBgkghkiG\n
9wWOBAQEFAAOCAg8AMIICCgKCAgEA3W29+ID6194bH6ejLrIC4hb2Ugo8v6ZC+Mrc\n
k2dNYMNPjcOKABvxxEtBamnSaeU/IY7FC/giN622LEtV/3oDcrua@+yWuVafyxmZ\n yTKUb4/GUgafRQPf/
eiX9urWurtIK7XgNGFNUjYPq4dSJQPPhwCHE /LKAykWnZBX\n
RrX@Dg4XyApNku@IpjIjEXH+8ixE12wH8wt7DEvdO7T3N3CfUbaIT11qBX+Nm2Z6\n q4Ag/

224

u5r18NJfXg71ZmXA3X0j7zFvpyapRIZcPmkvZYn7SMCp8dXyXHPdpSiIWL2\n uB3Ki04JrUYvt2GzLBUThp+1NSZaZ/
Q3y0aAAUkOx+1h@8285Pi+P810+H2Xic4S\n
vMq1xtLg2bNoPC5KnbRfuFPuUD2/3dSiiragJ6uYDLOYWJDivKGt/720VTEPAL90\nN
6T2pGZrwbQuiFGrGTMZOVWMSpQtN1+tCCX1T4mWqJDRWUMGrI4DnnGzt3IKgNwS4\n
Qy09KqjMIPwnXZAmWPm3FOKe4sFwc5fpawK001JZewDsYTDxV j+cwXwFxbE2yBiF\n
z2FAHwfopwaH35p3C61kcgP2k /zgA1lnBluzACUI+MKJ/GBgv/uAhj10HJQ3L6kn1\n SpvQ41/
ueBjlunExqQSYD7GtZ1Kg8uOcq2r+WISE3QcIMpQFFKkUV11mgWGwWYDUN3\n
Zsez95kCAWEAAaN7MHkwCQYDVROTBAIWADAsBglghkgBhvhCAQOEHXYdT3B1lb1NT\n
TCBHZW51cmFBZWQgQ2VydGlmaWNhdGUWHQYDVROOBBYEFF1fyR06G8y5qEFKik15\n
ajb2fT7XMB8GATUAIWQYMBaAFCNsLTO+KV14uGw+quK7Lh5sh/JTMABGCSqGSIb3\n
DQEBBQUAA4ICAQAT5WJFPgervbja5+90ikxi1deQVtVGB+z6a0AMUWK+qgilvgvrin
mu90t21vTSCSnRhjeiPBSIdqFMORMBtOCFk/kYDp9M/91b+vS+S9eAlxrNCB5VOf\n PqxEPp/wv1rBcE4GBO/
c6HcFon3F+0BYCsUQbZDKSSZxhDm3mj7pb67FNbZbJIzJ\n
70HDsRe20040iTx+h6g6pW3cOQMgIAVFgKNSEX727K4230BONIdGkzuj4KSMLONM\ N
S1SAcXZ4100SKNjy44BVEZvOZdXxTDrRMAEWJtNyggFzmtTuVe2nkUj1bYYYC5fOL\n
ADr6s0XMyaNk8twlWY1YDZ5uKDpVRVBfiGecqOuJIzIvemhuTrofh8pBQQNKkPRDFT\n Rq1iTo1Ihh13/
F11kXkTWR3jTjNb4jHX71IoXwpwp767HAPKGhjQ9cFbnHMEtkro\n
R1JYdtRg5mecDtwTOGFyoJLLBZdHHMHJZOF9H7FNk2tTQQMhK5MVYwg+LIaee586\n
CQVqfbscp7evlgjLW98H+5zy1RHAgoH2G79aH1jNKMp9BOuq6SnEglEsiWGVtu21\n hnx8SB3sVJZHeer8f/
UQQwgbAO+Kdy70NmbSagaVtp8j0xLiidWkwSyRTsuU6D81i\n
DiH5UEQBXExjrjOFslxcVKdVj5g1VeSmkLwZKbEU10KwleT/iXFhvooWhQ==\n ----- END CERTIFICATE-----
\n...\n"

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

225

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

3.5 POST /file/batch/{batchId}/cancel

Cancel Batch

When cancelling a batch, the connected analysis that are still in progress will be cancelled
also.

The cancelled batch will be closed.

REQUEST
PATH PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*batchId string The batch identifier used to submit files in the batch and to close the batch.

HEADER PARAMETERS

226

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch cancelled.
RESPONSE MODEL - application/json
EXAMPLE:
{

"<<batch_id>>": "cancelled"

}
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 404: Batch not found (invalid id)

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

227

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

228

4. LICENSE

Retrieve the current license information.

4.1 GET /admin/license

Get current license information

Fetch details about the longest expiry active license among all activated licenses.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Information about the licensed product (product type, number of activations,
deploymentld, expiration date and days left)

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

days_left

expiration

licensed_engines
licensed_to
max_agent_count
online_activated
product_id

229

NAME TYPE DESCRIPTION

product_name

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

230

5. STATS

Health check and statistics about MetaDefender Core instance usage.

5.1 GET /stat/engines

Engine Status

Return the status of the latest engines between the MetaDefender Core instances.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: An array with all the engines and their details.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE
abandoned

active

def_time

download_progress

download_time

eng_id

eng_name

eng_type

231

NAME TYPE DESCRIPTION

eng_ver
engine_type ALLOWED:

notified_messages
pinned
state ALLOWED:

type

5.2 GET /stat/nodes

Instance Status Overview

Retrieve status details of all available MetaDefender Core instances.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Status details of MetaDefender Core instances.

232

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
external_nodes_allowed
max_node_count
statuses
address
available_mem
cpu_cores
current_processing_files
engines
active
db_ver
def_time
download_time
eng_name
eng_ver
engine_type ALLOWED:

id
issues
free_disk_space
id
info_disk_space
dirs
free
location
total
issues
description
severity
load
0s

scan_queue

NAME TYPE DESCRIPTION

scan_queue_details
archive_scan_queue_ratio
available_slots
extracted_file_slots
file_slots
total_scan_queue

total_disk_space

total_mem

total_scan_queue

uptime

version

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied”

}

5.3 GET /readyz

Get health check status

234

Fetch current status of system health.

REQUEST
QUERY PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
verbose boolean tre Optional. Show detailed result of system health.
RESPONSE

STATUS CODE - 200: System is currently healthy.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

status*

scan_queue
number_in_queue*

status*

license*
status* ALLOWED:

components*
status*
datalake
status
detail
caching
status
detail
broker
status
detail
filestorage

235

NAME TYPE DESCRIPTION

status
detail
identity
status
detail
ometascan
status*
detail

instance

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

STATUS CODE - 503: System is currently unhealthy.

API Reference

Control Center

API Version: v2.4.0

Developer Guide

This is the APl documentation for MetaDefender Distributed Cluster Control Center Public API.
If you would like to evaluate or have any questions about this documentation, please contact
us via our Contact Us form.

How to Interact with MetaDefender Distributed
Cluster Control Center using REST API

The MetaDefender Distributed Cluster Control Center empowers administrators and system
engineers to efficiently manage system operations, including:

1. Establishing and maintaining essential service connections.

237

https://www.opswat.com/contact
https://www.opswat.com/contact

2. Deploying and managing MetaDefender Core, MetaDefender Distributed Cluster API
Gateway instances.

3. Managing licenses.

4. Administering user accounts and access controls.

5. Configuring and enforcing security protocols.

6. Monitoring the overall system health and system performance.

OPSWAT recommends using the JSON-based REST API. The available methods are
documented below.

OPSWAT provides some sample codes on GitHub to make it easier to understand how the
MetaDefender REST API works.

CONTACT

NAME: API Support

EMAIL: feedback@opswat.com

URL: https://github.com/OPSWAT/metadefender-core-openapi3
Terms of service: https://onlinehelp.opswat.com/policies/

238

https://github.com/OPSWAT
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/

Security and Authentication
SECURITY SCHEMES

KEY TYPE DESCRIPTION

apikey apiKey Generated ‘session_id" from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an “apikey™ for API
calls that require authentication.

239

API
1. USER MANAGEMENT

User management APlIs

The APIs for manage users and user directories.

1.1 GET /admin/user

List all users

Returns a list of all users in the server.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: List of users retrieved successfully.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE
api_key

directory_id

display_name
email
id

240

NAME TYPE DESCRIPTION

name
description
roles

ui_settings

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

1.2 POST /admin/user

241

Create user

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
api_key
directory_id
display_name
email
name
description
roles
ui_settings
password
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

api_key

directory_id
display_name
email

name
description
roles
ui_settings

242

STATUS CODE - 400: Bad Request (e.g. invalid header, invalid request body).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

243

{

"err": "<error message>"

}

1.3 DELETE /admin/user/{user_id}

Delete a user

Delete a user by id from the system.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.
RESPONSE MODEL - application/json
EXAMPLE:
{

"result”: "Success"”

}
STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied”

}

244

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Item does not exist”

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not allowed"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

1.4 POST /user/changepassword

Change Password for local user

Modify the current password for the user identified by apikey

245

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

old_password

new_password

EXAMPLE:
{
"old_password": "admin",
"new_password": "123456"
}
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
result

STATUS CODE - 400: Bad Request (e.qg. invalid header, invalid request body).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

246

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
I3

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

247

2. ADMIN

Admin specific API requests.

2.1 GET /admin/userdirectory

List all user directories

Retrieve a list of all user directories configured in the system.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: List of user directories retrieved successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE
id
name
type
enabled

lockout_attempts

lockout_timeout

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

248

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

2.2 POST /admin/role

Create new role

Add a new user role to the system.

REQUEST

249

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

name

display_name

rights
cert
configlog
engines
license
retention
rule
scanlog
update
updatelog
users
workflow
zone
healthcheck
fetch
download
deployment
service
packageupload

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

250

NAME TYPE DESCRIPTION

name

display_name

rights
cert
configlog
engines
license
retention
rule
scanlog
update
updatelog
users
workflow
zone
healthcheck
fetch
download
deployment
service
packageupload

editable*

id*

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

251

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

2.3 DELETE /admin/role/{role_id}

Delete a role

Delete a role by id from the system.

REQUEST

252

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.
RESPONSE MODEL - application/json
EXAMPLE:
{
"result": "Success"

}

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header"

}

STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
)3

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

253

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Item does not exist”
I3

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Not allowed"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

254

3. AUTH

Authentication APIs

User authentication is done via username & password.

3.1 POST /login

Login

Initiate a new session. Required for using protected REST APlIs.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
user*
password*
EXAMPLE:
{
"user": "admin",
"password”: "admin"
}
RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
oms-csrf-token*

session_id*

STATUS CODE - 403: Invalid credentials

255

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Failed to login"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

3.2 POST /logout

Logout

Destroy session for not using protected REST APlIs.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

256

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

response*

STATUS CODE - 400: Bad Request.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

errx

STATUS CODE - 403: Invalid user information.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

errx

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

257

4. CONFIG

Configure the product through APIs (especially the Settings). Will require admin apikey..

4.1 PUT /admin/config/auditlog/cleanup

Audit clean up

Setting audit record cleanup time (cleanup records older than).

Note: The cleanup range is defined in hours.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

258

NAME TYPE DESCRIPTION

cleanuprange

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

4.2 PUT /admin/config/filestorage/cleanup

File storage clean up

259

Setting file storage clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated "session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

cleanuprange

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}

260

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

4.3 PUT /admin/config/warehouse/cleanup

Executive report clean up

Setting executive report clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange

261

NAME TYPE DESCRIPTION

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

cleanuprange

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{
"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

262

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

4.4 PUT /admin/config/scanhistory/cleanup

Processing history clean up

Setting processing history clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST

REQUEST BODY - application/json

NAME TYPE DESCRIPTION

cleanuprange

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated ‘session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json

263

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
cleanuprange

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

4.5 PUT /admin/config/session

Session settings

264

Configure settings for session generated upon a successful login See more at Login

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION

absoluteSessionTimeout
allowCrosslpSessions
allowDuplicateSession

sessionTimeout

HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
absoluteSessionTimeout
allowCrosslpSessions
allowDuplicateSession
sessionTimeout

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

265

/docs/mdcore/metadefender-core/ref#userlogin

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

4.6 GET /admin/config/sessioncookie

Get session cookie attributes

Getting session cookie attributes

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

266

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE
samesite

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied"

}

267

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

4.7 PUT /admin/config/sessioncookie

Update session cookie attributes

Modifying session cookie attributes

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
samesite
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated ‘session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

268

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
samesite

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Not found"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

269

5. INSTALLERS

Upload and manage installers for the MetaDefender Core and MetaDefender Distributed Cluster
API Gateway.

5.1 GET /admin/installer

Get uploaded installers

Retrieve information about an uploaded installer.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully
RESPONSE MODEL - application/json
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header”

}

271

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied”

}
STATUS CODE - 404: Requests resource was not found.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Not found"

}

STATUS CODE - 500: Unexpected event on server
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

5.2 POST /admin/installer

Upload installer

Upload installers for the MetaDefender Core and MetaDefender Distributed Cluster API
Gateway.

272

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apikey string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

*filenam string The name of the installer file to upload. **Note**: Ensure the filename remains

€ same with the original MY OPSWAT download (e.g: ometascan-5.15.0-1-x64.msi)

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

installer_id

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

273

}
STATUS CODE - 405: The user has no rights for this operation.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}

STATUS CODE - 500: Unexpected event on server
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

5.3 DELETE /admin/installer/{installer_id}

Delete an uploaded installer

Delete an uploaded installer.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

274

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

result

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Not found"

}

275

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

276

6. SERVICES

Add essential services and view connection status.

6.1 GET /admin/service

Get the status of all essential services.

Retrieve the status of all added services within the MetaDefender Distributed Cluster system.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Details of all added services and their status.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
service_type

healthy_instances
overall_status
overall_status_description
instances

service_id

message

display_name

277

NAME TYPE DESCRIPTION

status_description
host
port
version
added_by
last_update
last_healthy
detail
cpu_usage
platform
role
db_size
ram
total_bytes
used_bytes
disk
total_bytes
used_bytes

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

278

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

6.2 POST /admin/service

Connect and check essential services status.

Establish connections and retrieve the status of essential services within the MetaDefender
Distributed Cluster system.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
ONE:OF

OPTION:1

279

NAME TYPE DESCRIPTION
host*

port*

connection_key*
OPTION:2

host*

port*

user*

password*
OPTION:3

host*

port*

user

password

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE

result
service_id
detail

STATUS CODE - 400: Bad Request (e.qg. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

280

EXAMPLE:
{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
I3

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "<error message>"
}

6.3 PUT /admin/service/{service_id}

Edit service details.

281

Update the display name and/or configuration details for a specific service. Note: Service
configuration cannot be modified after instances have been deployed.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION

display_name
config
host
port
user
password
connection_key

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

service_id
message
display_name
status_description
host

port

version

added_by

282

NAME TYPE DESCRIPTION

last_update
last_healthy
detail
cpu_usage
platform
role
db_size
ram
total_bytes
used_bytes
disk
total_bytes
used_bytes

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header"

}

STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
)3

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

283

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

6.4 DELETE /admin/service/{service_id}

Disconnect to service and remove their configurations.

Remove the connection and configuration details for a specific service. Note: Service
configuration cannot be deleted after instances have been deployed.

284

REQUEST
HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated ‘session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to remove service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

service_id

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header"

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

285

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

6.5 GET /admin/service/{service_type}

Get status for a specific service.

Retrieve the current status of a specific service, including all instance details. Note: The
service_type must be one of: datalake, warehouse, caching, broker, filestorage.

286

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated ‘session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to get service type was successful

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

overall_status
overall_status_description
healthy_instances
instances
service_id
message
display_name
status_description
host
port
version
added_by
last_update
last_healthy
detail
cpu_usage
platform
role
db_size
ram
total_bytes
used_bytes

287

NAME TYPE DESCRIPTION

disk
total_bytes
used_bytes

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json

288

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

6.6 GET /admin/service/{service_type}/setting

Get service settings

Retrieve the current configuration settings for a specific service. Note: Supported only for the
filestorage service type.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated "session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to retrieve service settings was successful

289

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

max_replica
min_replica
cleanuprange
storage

type

config

STATUS CODE - 400: Bad Request (e.qg. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 404: Requests resource was not found.
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

290

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

6.7 PUT /admin/service/{service_type}/setting

Edit setting of service

Update the configuration settings for a specific service. Note: Supported only for the filestorage
service type.

REQUEST
REQUEST BODY - application/json
NAME TYPE DESCRIPTION
max_replica

min_replica

291

NAME TYPE DESCRIPTION

cleanuprange

storage
type
config
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
result

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

292

{

"err": "Access denied"

}
STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Not found"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
)3

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "<error message>"

}

293

7. WORKERS

Connect, deploy, undeploy and manage workers.

7.1 GET /admin/worker

List connected workers

Retrieve a list of currently connected MetaDefender Distributed Cluster Worker services.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: A list of connected workers.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE
worker_id

display_name
platform
os
package_type
hardware
cpu
count

294

NAME TYPE DESCRIPTION

model
usage
disk
available_bytes
total_bytes
memory
available_bytes
total_bytes
user_name
host
port
status
status_description
version
deployment_info
type
installer_id
version
user_name

custom_config

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

295

NAME TYPE DESCRIPTION

err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

}

7.2 POST /admin/worker

Connect to workers

Connect to MetaDefender Distributed Cluster Worker services.

REQUEST

REQUEST BODY - application/json

296

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE
display_name*
host*
port*
result* ALLOWED:

worker_id

error

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header"

}

STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

297

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

7.3 DELETE /admin/worker

Disconnect from workers

Disconnect from specified MetaDefender Distributed Cluster Worker services.

REQUEST
REQUEST BODY - application/json

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

298

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to disconnect workers was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
worker_id ALLOWED:

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Invalid header”

}

STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
I3

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

299

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "Access denied”

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

7.4 GET /admin/worker/available/{installer_id}

Get available workers by installer_id.

Retrieve the list of available workers eligible for deployment for the specified installer ID.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to get available workers was successful

300

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
ARRAY OF OBJECT WITH BELOW STRUCTURE
worker_id

display_name
platform
os
package_type
hardware
cpu
count
model
usage
disk
available_bytes
total_bytes
memory
available_bytes
total_bytes
user_name
host
port
status
status_description
version
deployment_info
type
installer_id
version
user_name

custom_config

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

301

NAME TYPE DESCRIPTION

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
I3

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{
"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

302

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

7.5 POST /admin/worker/deploy

Deploy workers

Deploy the selected installer on one or more selected workers.

REQUEST

REQUEST BODY - application/json

NAME TYPE DESCRIPTION

ONE:OF
OPTION:1
type* ALLOWED:
installer_id*
worker*
license_id
config

log_level DEFAULT:info
ALLOWED:

connection_per_file_service >=1
DEFAULT:4

OPTION:2
type* ALLOWED:
installer_id*
worker*
cert

config

303

NAME TYPE DESCRIPTION

port between 1 and 65535
DEFAULT:8899
log_level DEFAULT:info
ALLOWED:
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful
RESPONSE MODEL - application/json
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header"

}
STATUS CODE - 403: Invalid user information or Not Allowed
RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

304

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:

{

"err": "<error message>"

}

7.6 DELETE /admin/worker/deploy

Undeploy workers

Undeploy the specified workers.

REQUEST
REQUEST BODY - application/json
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

305

STATUS CODE - 200: Request to undeploy workers was successful
RESPONSE MODEL - application/json
STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Invalid header”

}
STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

306

NAME TYPE DESCRIPTION

err

EXAMPLE:
{

"err": "<error message>"

}

7.7 POST /admin/worker/upgrade

Upgrade deployed instances

Upgrade the deployed instances managed by the worker to a newer version

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

version*

type* ALLOWED:
HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey" for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: Request to upgrade workers was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
result

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

307

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
I3

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "<error message>"

308

7.8 GET /admin/worker/upgrade/version

Get upgradable instance version

Retrieve a list of available versions of MetaDefender Core and MetaDefender Distributed Cluster
API Gateway for upgrading.

REQUEST
HEADER PARAMETERS
NAME TYPE EXAMPLE DESCRIPTION
*apike string Generated “session_id" from [Login](/docs/mdcore/metadefender-distributed-
Y cluster/ref#userlogin) call can be used as an “apikey™ for API calls that require

authentication.

RESPONSE

STATUS CODE - 200: A list of available versions for upgrading.

RESPONSE MODEL - application/json

NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
ometascan*

api-gateway*

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:
{

"err": "Invalid header”

}

309

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err
EXAMPLE:
{
"err": "Access denied”
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE

err

EXAMPLE:

{

"err": "Access denied"

}
STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION
OBJECT WITH BELOW STRUCTURE
err

EXAMPLE:
{

"err": "<error message>"

}

310

