
MetaDefender Distributed Cluster

v2.4.0

Table of Contents

Installation 1

Overview 1

System requirements 4

Installation 8

Physical or Virtual Machine-Based Setup 9

MetaDefender Distributed Cluster File Storage 20

MetaDefender Distributed Cluster Identity Service 30

MetaDefender Distributed Cluster Worker 41

MetaDefender Distributed Cluster Control Center 51

Container-Based Setup 56

Recommended Setup 91

License activation 93

Online Activation 94

Offline Activation 97

Module update 102

Configurations 106

High Availability 106

High Availability support for File Storage 107

High Availability support for RabbitMQ 110

High Availability support for Redis 114

High Availability support for PostgreSQL Data lake 118

System settings 128

Data Retention 129

Remote Support Package Gathering 131

Security 134

File Storage 143

Upgrade 148

System Upgrade 148

Performance 153

Performance and Load Estimation 153

Troubleshooting 167

Log Gathering in MetaDefender Distributed Cluster 167

Release Notes 170

Release notes 170

API Gateway 173

Control Center 237

Overview

The MetaDefender Distributed Cluster (MDDC) is an approach to serve very large deployments

while offering improved auto-scaling, high availability and fault tolerant capabilities for

MetaDefender Core.

The MetaDefender Distributed Cluster consists of several components:

1

The Distributed Cluster offers users two distinct interfaces. The first is a RESTful interface

provided by MDDC API Gateway for applications to upload files for scanning, retrieve scan status,

download processed files, or abort file scanning. The other is a Web UI provided by MDDC Control

Center for the system administrator to manage licenses and users, modify workflow

configurations, monitor the overall system, and remotely deploy or upgrade MDDC API Gateway or

MetaDefender Core.

When a file is submitted to the MDDC API Gateway for scanning, its body content is securely

transmitted to MDDC File Storage for subsequent use. API Gateway submits a scan task in

RabbitMQ queue, and responds to the application with data_id . The task is delivered to healthy

MetaDefender Core instances and one of them will accept the task. The file corresponding to

the task is transmitted from MDDC File Storage to the instance's local storage, and the

processing of the file takes place. Scan results produced by the processing are continuously

recorded in Redis for fast retrieval and are finally stored in the PostgreSQL database for long-term

storage. If created, the sanitized or watermarked file is securely transmitted to MDDC File Storage

for future download by MDDC API Gateway.

Component Functionalities

MDDC Control

Center

Assist administrators with user management, system health monitoring,

and deploying or upgrading MetaDefender Core or API Gateway without any

downtime.

MDDC Identity

Service

Assist Control Center and API Gateway in client authentication, managing

user activity sessions and authorization.

MDDC File

Storage

Securely store and share files asynchronously across components in the

cluster. The component manages the duration and duplication of files.

MDDC Worker Deploy and monitor activities of MetaDefender Core and MDDC API Gateway.

MDDC API

Gateway

Accept file scans, fetch scan statuses, and process download requests

from clients.

MetaDefender

Core

Scan the accepted files.

RabbitMQ -

Message

broker

Receives tasks from the API Gateway and forwards them to MetaDefender

Core instances for processing.

Redis -

Caching server

Store in-progress results in memory for rapid retrieval.

PostgreSQL -

Database sever

Permanently store scan results, configuration and executive reports.

2

In certain rate situations, if one of the MetaDefender Core instances unexpectedly ceases

operation, its 'broken' files are delivered to other MetaDefender Core instances for continued

processing without the need for applications to resubmit the files. By leveraging MDDC File

Storage and RabbitMQ, MetaDefender Core instances within MetaDefender Distributed Cluster

can collaborate in distributing the workload of archive extraction, greatly decreasing the overall

time required to process archive files while utilizing the resources much more efficiently.

Using the Web Console from by MDDC Control Center, the system administrator is able to adjust

workflow settings centrally and, after which the updates are automatically synced across all

MetaDefender Core instances. The administrator can scale out the number of MDDC API

Gateway or MetaDefender Core instances if additional power is required. He or she can also

upgrade the instances seamlessly while the file processing is occurring. All statistical data and

health information for components, along with executive reports, can be accessed easily through

the Web UI of MDDC Control Center.

3

System requirements

Windows

Component

Minimum

version Dependencies

Recommended

System Specs

PostgreSQL Database Server 16.9 Vendor

recommendation

RabbitMQ Messaging Broker 3.13.0 64 bit Erlang/OTP 25.0

or above.

Vendor

recommendation

MetaDefender Distributed

Cluster File Storage

2.3.0 Microsoft Visual C++

Redistributable 2019

version 14.29.30139.0

or above.

Minimum of 8

CPU cores and 8

GB of RAM

required.

MetaDefender Distributed

Cluster Control Center

2.3.0 Microsoft Visual C++

Redistributable 2019

version 14.29.30139.0

or above.

Minimum of 4

CPU cores and 4

GB of RAM

required.

MetaDefender Distributed

Cluster Identity Service

2.3.0 Microsoft Visual C++

Redistributable 2019

version 14.29.30139.0

or above.

Minimum of 4

CPU cores and 4

GB of RAM

required.

MetaDefender Distributed

Cluster Worker for

MetaDefender Distributed

Cluster API Gateway

2.3.0 Microsoft Visual C++

Redistributable 2019

version 14.29.30139.0

or above.

Minimum of 4

CPU cores and 8

GB of RAM

required.

MetaDefender Distributed

Cluster Worker for

MetaDefender Core

2.3.0 Microsoft Visual C++

Redistributable 2019

version 14.29.30139.0

or above.

System

Configuration

4

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements#windows
https://www.rabbitmq.com/docs/which-erlang
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://www.opswat.com/docs/mdcore/installation/recommended-system-configuration#microsoft-windows-deployments

Debian/Ubuntu or Red Hat/Rocky

Info

WMIC , by default, is disabled since Windows 11. To enable it, please run the following

command as Administrator in Command Prompt:

DISM /Online /Add-Capability /CapabilityName:WMIC

5

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements#debianubuntu-or-red-hatrocky

Component

Minimum

version Dependencies

Recommended

System Specs

PostgreSQL Database Server 16.9 Vendor

recommendation

Redis Caching Server 7.0.5 Vendor

recommendation

RabbitMQ Messaging Broker 3.13.0 64 bit

Erlang/OTP

25.0 or above.

Vendor

recommendation

MetaDefender Distributed Cluster File

Storage

2.3.0 uuid

package.

tar tool.

lsb_release

tool.

Minimum of 8

CPU cores and 8

GB of RAM

required.

MetaDefender Distributed Cluster

Control Center

2.3.0 uuid

package.

tar tool.

lsb_release

tool.

Minimum of 4

CPU cores and 4

GB of RAM

required.

MetaDefender Distributed Cluster

Identity Service

2.3.0 uuid

package.

tar tool.

lsb_release

tool.

Minimum of 4

CPU cores and 4

GB of RAM

required.

MetaDefender Distributed Cluster

Worker for MetaDefender Distributed

Cluster API Gateway

2.3.0 uuid

package.

tar tool.

lsb_release

tool.

Minimum of 4

CPU cores and 8

GB of RAM

required.

6

https://www.rabbitmq.com/docs/which-erlang

Component

Minimum

version Dependencies

Recommended

System Specs

MetaDefender Distributed Cluster

Worker for MetaDefender Core

2.3.0 uuid

package.

tar tool.

lsb_release

tool.

System

configuration

Info

tar , by default, is not included in some Linux distributions. Please run the following

command in Terminal to install tar :

Debian/Ubuntu: sudo apt install tar

Red Hat/Rocky: sudo dnf install tar

Info

lsb_release , by default, is not included in Rocky. Please run the following command in

Terminal to install lsb_release

sudo dnf install -y yum-utils

sudo dnf config-manager --set-enabled devel

sudo dnf update -y

sudo dnf install -y redhat-lsb-core

7

https://www.opswat.com/docs/mdcore/installation/recommended-system-configuration#linux-deployments

Installation

This section includes guidance for installing and setting up the MetaDefender Distributed Cluster

on physical machines, virtual machines, or in containers.

8

Physical or Virtual Machine-Based Setup

Installation order

MetaDefender Distributed Cluster consists of the following components along with their

corresponding default ports.

The system administrator should adhere to the following service installation sequence to prevent

conflicts:

1. Install Redis, RabbitMQ, Postgres, MDDC File Storage, MDDC Identity Service.

Prerequisite

Before executing the setup, please ensure System requirements are met and that any

necessary dependencies are installed.

Step Component

How to

install

(short

name)

Default

port

1 Redis Caching Server Redis 6379

2 RabbitMQ Message Broker RabbitMQ 5672

3 PostgreSQL Database Server PostgreSQL 5432

4 MetaDefender Distributed Cluster File Storage MDDC File

Storage

8890

5 MetaDefender Distributed Cluster Identity Service MDDC

Identity

Service

8891

6 MetaDefender Distributed Cluster Control Center MDDC Control

Center

8892

7 MetaDefender Distributed Cluster Worker MDDC Worker 8893

9

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#installation-order
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-system-requirements
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-redis-caching-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-rabbitmq-message-broker
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-postgresql-database-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-file-storage
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-identity-service
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-control-center
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-worker

2. Install MDDC Control Center.

3. Install MDDC Worker on the targeted machines (for deploying MDDC API Gateway or

MetaDefender Core).

Installation

Install Redis Caching Server

1. Follow steps to install Redis Caching server.

2. Access Redis configuration file /etc/redis/redis.conf for editing.

3. Comment out the bind setting and set protected-mode option to no.

4. Restart the service.

Warning

An exception rule for the firewall needs to be created to permit both incoming (inbound) and

outgoing (outbound) connections to every component.

Info

While many components can be set up on a single machine, they should be installed

individually on different machines according to their features. Kindly consult Best practices

for further information.

Info

Redis version 7.0 or higher is required.

Only Redis on Linux is officially recommended.

redis.conf none

...
The following line should be commented
bind 127.0.0.1
...
The following line should be uncommented and set to no
protected-mode no
...

10

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#installation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-redis-caching-server
https://redis.io/docs/latest/operate/oss_and_stack/install/archive/install-redis/install-redis-on-linux/
https://www.opswat.com/distributed-cluster-deployment/mddc-best-practices

Install RabbitMQ Message Broker

Windows

1. Download Erlang and follow the instructions to install Erlang.

2. Download RabbitMQ for Windows.

3. Run the executable file as administrator, follow instructions to complete the RabbitMQ

installation.

4. In Command Prompt, change working directory to <RabbitMQ installation

folder>/rabbitmq_server-<version>/sbin and run the following command:

Linux

1. Download Erlang and follow the instructions to install Erlang and its dependencies.

2. Download RabbitMQ for Red Hat/Rocky or Debian/Ubuntu .

bash

Red Hat/Rocky
 $ sudo systemctl enable redis
 $ sudo systemctl restart redis

Debian/Ubuntu
$ sudo systemctl enable redis-server
$ sudo systemctl restart redis-server

Info

RabbitMQ version 3.13.0 or higher is required.

Warning

RabbitMQ functions effectively only with specific supported versions of Erlang. Please refer to

the link for the Erlang-RabbitMQ compatibility matrix.

None bash

> rabbitmqctl.bat add_user <username> <password>
> rabbitmqctl.bat set_permissions -p / <username> "." "." "."
> rabbitmqctl.bat set_user_tags <username> administrator

11

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-rabbitmq-message-broker
https://www.erlang.org/downloads
https://www.rabbitmq.com/install-windows.html#downloads
https://www.erlang-solutions.com/downloads/
https://www.rabbitmq.com/install-rpm.html#downloads
https://www.rabbitmq.com/install-debian.html#manual-installation
https://www.rabbitmq.com/docs/which-erlang#compatibility-matrix

3. In Terminal, run the following command:

4. In Terminal, run the following command:

Install PostgreSQL Database Server

1. Download PostgreSQL Database Server.

2. Follow steps to setup Postgres Database Server to allow connections from external

applications.

3. Restart Postgres Database Server.

Install MDDC File Storage

1. Build Ignition file for MDDC File Storage service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the

following command:

bash

Red Hat/Rocky
$ sudo rpm -Uvh --nodeps rabbitmq-server-<rabbitmq
version>.el8.noarch.rpm
$ sudo systemctl enable rabbitmq-server
$ sudo systemctl start rabbitmq-server

Debian/Ubuntu
$ sudo dpkg -i rabbitmq-server_<rabbitmq version>_all.deb

None bash

$ sudo rabbitmqctl add_user <username> <password>
$ sudo rabbitmqctl set_permissions -p / <username> "." "." "."
$ sudo rabbitmqctl set_user_tags <username> administrator

Info

PostgreSQL version 16.9 or higher is required.

pg_trgm extension is required for PostgreSQL running on Linux.

bash

12

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-postgresql-database-server
https://www.postgresql.org/download/
https://www.opswat.com/troubleshooting/open-connection-on-postgresql-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-file-storage
https://www.opswat.com/distributed-cluster-deployment/mddc-file-storage-ignition

3. Check the service status.

Install MDDC Identity Service

1. Build Ignition file for MDDC Identity Service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the

following command:

3. Check the service status.

Install MDDC Control Center

1. Build Ignition file for MDDC Control Center service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the

following command:

Windows
> msiexec.exe /i <mddc_file_storage_package> /qn

Debian or Ubuntu
$ sudo apt -y install uuid
$ sudo dpkg -i <mddc_file_storage_package> || sudo apt install
-f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_file_storage_package> -y

bash

Windows
> msiexec.exe /i <mddc_identity_service_package> /qn

Ubuntu or Debian
$ sudo apt -y install uuid
$ sudo dpkg -i <mddc_identity_service_package> || sudo apt
install -f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_identity_service_package> -y

bash

13

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-identity-service
https://www.opswat.com/distributed-cluster-deployment/mddc-identity-service-ignition#ignition-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-control-center
https://www.opswat.com/distributed-cluster-deployment/mdcc-control-center-ignition#ignition-file

3. Check the service status.

Setup Data Lake and Data Warehouse

1. Go to C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Control Center

directory in Windows Command Prompt or /usr/sbin directory in Linux Terminal.

2. Run the following command:

Install MDDC Worker

Windows
> msiexec.exe /i <mddc_control_center_package> /qn

Ubuntu or Debian
$ sudo apt -y install uuid
$ sudo dpkg -i <mddc_control_center_package> || sudo apt
install -f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_control_center_package> -y

bash

Windows
> mddc-dbready.exe --host=<postgres-host> --port=<postgres-
port> --user=<postgres-user> --password=<postgres-password> --
target=lake,warehouse

Linux (Ubuntu, Debian, Red Hat or Rocky)
$ mddc-dbready --host=<postgres-host> --port=<postgres-port> -
-user=<postgres-user> --password=<postgres-password> --
target=lake,warehouse

Info

Make sure the postgres-user possesses superuser rights to successfully create the

database.

14

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#setup-data-lake-and-data-warehouse
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#install-mddc-worker

1. Build Ignition file for MDDC Worker service.

2. Start Command Prompt as Administrator on Windows or Terminal on Linux and run the

following command:

3. Check the service status.

4. Repeat the above steps for other MDDC Workers.

Configurations

When all MDDC Worker instances are installed successfully, it marks a completed installation.

Now, heading to essential configuration steps.

Connect essential services

1. Sign in to MDDC Control Center web console with the initial administrator user account

that you created in Install MDDC Identity Service.

Info

You need to prepare at least two workers: one for MetaDefender Core and the other for

MDDC API Gateway.

bash

Windows
> msiexec.exe /i <mddc_worker_package> /qn

Ubuntu or Debian
$ sudo apt -y install uuid
$ sudo dpkg -i <mddc_worker_package> || sudo apt install -f

Red Hat or Rocky
$ sudo dnf -y install uuid
$ sudo yum install <mddc_worker_package> -y

Info

Essential services for the Distributed Cluster includes Redis, Postgres, RabbitMQ, and MDDC

File Storage.

The system is operational only when MDDC Control Center can effectively connect to all

essential services.

15

https://www.opswat.com/distributed-cluster-deployment/mddc-worker-ignition#ignition-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#configurations
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#connect-essential-services

2. Go to Inventory > Services , open the relevant service category, and click on Add

service .

4. Complete all necessary fields as specified by the selected services.

5. Save result.

6. Check status of the service connections.

16

Submit MetaDefender Core and MDDC API Gateway packages

1. Sign in to MDDC Control Center web console with the initial administrator user account

that you created in Install MDDC Identity Service.

2. Go to Inventory > Packages and select Upload package .

3. Select MetaDefender Core or MDDC API Gateway installation files.

4. Click Update .

Connect to MDDC Workers

1. Sign in to MDDC Control Center web console with the initial administrator user account

that you created in Install MDDC Identity Service.

2. Go to Inventory > Workers and select Add workers .

3. Complete the required fields to add new workers and select Submit .

4. Check the status of MDDC Worker connections.

Info

The packages are installation files of MetaDefender Core and MDDC API Gateway, which

will be subsequently deployed on MDDC Worker remotely by MDDC Control Center.

Various versions of installation files may be submitted to MDDC Control Center. The correct

version to install will be chosen during Deployment phase.

17

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#submit-metadefender-core-and-mddc-api-gateway-packages
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#connect-to-mddc-workers

Deploy MetaDefender Core and MDDC API Gateway instances

1. Sign in to MDDC Control Center web console with the initial administrator user account

that you created in MDDC Identity Service.

2. Go to Inventory > Workers and select Deploy workers .

3. Choose the workers for deployment and decide which package will be deployed on the

workers.

4. Choose Next .

5. Confirm the deployment details, then click Deploy and Finish .

6. Hold off until the deployment is completed successfully.

Info

The license to activate MetaDefender Core instances can be selected in this phrase.

Advanced settings (enable HTTPS, select log level, define engine parallel count, etc.) are

configurable.

18

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-vm-setup#deploy-metadefender-core-and-mddc-api-gateway-instances

7. Once the system is up, MDDC API Gateway can efficiently accept scan requests.

19

MetaDefender Distributed Cluster File

Storage

Ignition file

To install MetaDefender Distributed Cluster (MDDC) File Storage server, ignition file in YML format

is required at the following location:

Windows: C:\opswat\mddc_file_storage.yml

Linux: /etc/opswat/mddc_file_storage.yml

The ignition file includes fields:

Info

The ignition file is required only for a clean installation.

The following fields are essential for the ignition file:

secure.connection_key

secure.private_key

secure.certificate

20

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#ignition-file

Key

path

Value

type Accepted values Required Description

sec

ure.

conn

ecti

on_

key

String A string from 4 to 64

character long containing

digits from 0 to 9 and

characters from a/A to

z/Z

Required An arbitrary string that enables

clients to connect to the server.

Use this value as input when

adding MDDC File Storage in

the UI of MDDC Control Center.

sec

ure.

priv

ate

_ke

y

String Required Content of private key in X509

format.

sec

ure.

cert

ifi

cat

e

String Required Content of certificate in X509

format.

sto

rage

.pa

th

String Optional Path to an existing directory

where the MDDC File Storage

server stores its files. The

server requires full

permissions to access the path

in Linux.

res

t.h

ost

String Optional IP address (V4/V6) or host

where the server resides on.

Default value is '*'

Notes: value '*' allows the

service to accept connections

from all network interfaces.

To bind the service to a specific

interface, specify its IP address

or domain name.
For example,

to listen on all IPv4 interfaces,

set the host to 0.0.0.0

res

t.p

ort

Number Optional The port where the server

resides on. Default value is

8890

21

Key

path

Value

type Accepted values Required Description

log

.str

eams

[@].

log_

typ

e

String file

syslog

Optional Type of log device.

log

.str

eams

[@].

log_

lev

el

String dump

debug

info

warning

error

Optional Level of log message.

log

.str

eams

[@].

log_

pat

h

String If

log.streams[@].log_ty

pe is "file" then

log.streams[@].log_pa

th is the path to a file on

file system where logs

are written.

If

log.streams[@].log_ty

pe is "syslog" then

log.streams[@].l

og_path can be

[tcp/udp]://host

:port where

host:port is the

host and port to a

remote syslog

server that

supports TCP or

UDP protocol.

log.streams[@].l

og_path can be

"local" to write

log to local syslog

server (Linux only).

Optional Location where logs are

written.

22

Configuration file

After successfully installing, MDDC File Storage generates a configuration file with changeable

settings at the following location:

Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster File

Storage\mddc_file_storage.yml

Linux: /etc/mddc-file-storage/mddc_file_storage.yml

Sample

Info

If storage.path is not defined in the Ignition file, MetaDefender Distributed Cluster File

Storage will save the submitted files in the default storage directory according to the

platform:

On Windows, <install-directory>/data/storage

On Linux, /var/lib/mddc-file-storage/storage

Warning

The default storage directory will be deleted when MDDC File Storage is uninstalled.

Info

The service must be restarted to take the new configurations into effect.

Info

OpenSSL or a similar tool (e.g., ssh-keygen) can create a pair of public and private keys in

X.509 format.

yaml

23

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#configuration-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-file-storage#sample

secure:
 connection_key: "1234abcd" # [0-9a-zA-Z]{4,64}
 private_key: |
 -----BEGIN PRIVATE KEY-----

MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQCjYtuWaICCY0
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpoR8Di3DAm
HK

nSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
ZZ

toGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SU

0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK4l2p
HN

uC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFIBKIzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqnV0nPN1IM
Sn

zXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAoICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di7oZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg0ewLdBCOZVw+wPABlaqz+0UOiSMMftp
k9

fz9JwGd8ERyBsT+tk3Qi6D0vPZVsC1KqxxL/cwIFd3Hf2ZBtJXe0KBn1pktWht
5A

24

Kqx9mld2Ovl7NjgiC1Fx9r+fZw/iOabFFwQA4dr+R8mEMK/7bd4VXfQ1o/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBtODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKTl
Q8

YZkpIcLNVLw0usoGYHFm2rvCyEVlfsE3Ub8cFyTFk50SeOcF2QL2xzKmmbZEpX
gl

xBHR0hjgon0IKJDGfor4bHO7Nt+1Ece8u2oTEKvpz5aIn44OeC5mApRGy83/0b
vs

esnWjDE/bGpoT8qFuy+0urDEPNId44XcJm1IRIlG56ErxC3l0s11wrIpTmXXck
qw

zFR9s2z7f0zjeyxqZg4NTPI7wkM3M8BXlvp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgHl24nTg00UH1OjZsABAoIBAQDOxftSDbSqGytcWqPYP3SZHAWDA0O4ACEM+e
Cw

au9ASutl0IDlNDMJ8nC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40QdykllTzTVROqmP8+efreIvqlzHmuqaGfGs5oTkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qa++xh5mfE25c+M9fiIBTiNSo4lTxWMBShnK8xrGaMEmN7W0qTMb
FH

PgQz5FcxRjCCqwHilwNBeLDTp/ZECEB7y34khVh531mBE2mNzSVIQcGZP1I/Dv
Xj

W7UUNdgFwii/GW+6M0uUDy23UVQpbFzcV8o1C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6WxOKjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Zo19BowytN+t
r6

2ZFoIBA9Ubc9esEAU8l3fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOmbSUhN3PG
2m

39I802u0fFNVQCJKhx1m1MFFLOu7lVcDS9JN+oYVPb6MDfBLm5jOiPuYkFZ4gH
79

J7gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw

25

DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYc0rlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7AoIBAGKzKIMDXdCxBWKhNYJ8z7hiItNl1IZZMW2TPUiY0rl6ya
Ch

BVXjM9W0r07QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfXO9o9uIYLokr
WQ

x1dBl5UnuTLDqw8bChq7O5y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZEf
HI

UlGdNVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns6oDs6Tb9AECggEBAJYzd+SOYo26iBu3nw
3L

65uEeh6xou8pXH0Tu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7TOjt41UdqIKO8vN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCyExIELOuzWAMKzg7CAiIlNS9foWeLyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9vK9yrwF6X44ItRoOJafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLq+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt/8yvPflS+xv3kg/ZBvR9JB1In2n3rUCYYD47ReKFqJ03Vmq5C9
nY

56s9w7OUO8perBXlJYmKZQhO4293lvxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTW0LGVCpjcQoaKvymAoCmAs8V2o
Mr

Ziw1YQ9uOUoWwOqm1wZqmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDOD0aqkSY
3E

26

NqOvbCV1/oUpRi3076khCoAXI1bKSn/AvR3KDP14B5toHI/F5OTSEiGhhHesgR
rs
 fBrpEY1IATtPq1taBZZogRqI3rOkkPk=
 -----END PRIVATE KEY-----
 certificate: |
 -----BEGIN CERTIFICATE-----

MIIF5jCCA86gAwIBAgIJANq50IuwPFKgMA0GCSqGSIb3DQEBCwUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GA1UECAwHRXJld2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZD
Eb

MBkGA1UECgwSbGlid2Vic29ja2V0cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3
Qx

HzAdBgkqhkiG9w0BCQEWEG5vbmVAaW52YWxpZC5vcmcwIBcNMTgwMzIwMDQxNj
A3

WhgPMjExODAyMjQwNDE2MDdaMIGGMQswCQYDVQQGEwJHQjEQMA4GA1UECAwHRX
Jl

d2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZDEbMBkGA1UECgwSbGlid2Vic29ja2
V0

cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3QxHzAdBgkqhkiG9w0BCQEWEG5vbm
VA

aW52YWxpZC5vcmcwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCjYt
uW

aICCY0tJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAmHKnSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSU0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+
m6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
WQ

Ujy5N8pSNp7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK4l2pHNuC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFI

27

BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqn
V0

nPN1IMSnzXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTvP/AuehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
QU

9mYU23tW2zsomkKTAXarjr2vjuswHwYDVR0jBBgwFoAU9mYU23tW2zsomkKTAX
ar

jr2vjuswDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAgEANjIBMr
ow

YNCbhAJdP7dhlhT2RUFRdeRUJD0IxrH/hkvb6myHHnK8nOYezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z26O0uWVk+7DNNLH9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsiL6Ul6cy0QlTJWKVLEUQQ6yda582e23J1AXqtqFcpfoE
34

H3afEiGy882b+ZBiwkeV+oq6XVF8sFyr9zYrv9CvWTYlkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDR0aRLRlvxUa9dHGFHLICG34Juq5Ai6lM1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
2g

1WpTHlumlClZeP+G/jkSyDwqNnTu1aodDmUa4xZodfhP1HWPwUKFcq8oQr148Q
YA

AOlbUOJQU7QwRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUU1WjMbWg6
Gg

mnIZLRerQCu1Oozr87rOQqQakPkyt8BUSNK3K42j2qcfhAONdRl8Hq8Qs5pupy
+s

8sdCGDlwR3JNCMv6u48OK87F4mcIxhkSefFJUFII25pCGN5WtE4p5l+9cnO1Gr
IX

28

 e2Hl/7M0c/lbZ4FvXgARlex2rkgS0Ka06HE=
 -----END CERTIFICATE-----

29

MetaDefender Distributed Cluster Identity

Service

Ignition file

To install MetaDefender Distributed Cluster (MDDC) Identity Service server, ignition file in YML

format is required at the following location:

Windows: C:\opswat\mddc_identity_service.yml

Linux: /etc/opswat/mddc_identity_service.yml

The ignition file includes fields:

Info

The ignition file is required only for a clean installation.

The following fields are essential for the ignition file:

secure.connection_key

secure.private_key

secure.certificate

database.host

database.port

database.user

database.password

30

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#ignition-file

Key

path

Value

type Accepted values Required Description

secur

e.con

necti

on_ke

y

String A string from 4 to 64

character long containing

digits from 0 to 9 and

characters from a/A to z/Z

Required An arbitrary string that

enables clients to connect

to the server.

Use this value for the key

identity.connection_key

in configuration file of

MetaDefender Distributed

Cluster Control Center.

secur

e.pri

vate_

key

String Required Content of private key in

X509 format.

secur

e.cer

tific

ate

String Required Content of certificate in

X509 format.

datab

ase.h

ost

String Required IP address / domain name

of the server where

PostgreSQL server locates.

datab

ase.p

ort

Number Required Port of PostgreSQL server is

listening for connections

from clients.

datab

ase.u

ser

String Required PostgreSQL server's user.

SUPERUSER privilege is

required to setup the

server's database and

extensions for the first

time.

datab

ase.p

asswo

rd

String Required PostgreSQL server's user

credentials.

31

Key

path

Value

type Accepted values Required Description

rest

.host

String Optional IP address (V4/V6) or host

where the server resides

on. Default value is '*'

Notes: value '*' allows

the service to accept

connections from all

network interfaces.

To bind the service to a

specific interface, specify

its IP address or domain

name.
For example, to

listen on all IPv4 interfaces,

set the host to 0.0.0.0

rest

.port

Number Optional The port where the server

resides on. Default value is

8891

log.s

tream

s[@].

log_t

ype

String file

syslog

Optional Type of log device.

log.s

tream

s[@].

log_l

evel

String dump

debug

info

warning

error

Optional Level of log message.

32

Key

path

Value

type Accepted values Required Description

log.s

tream

s[@].

log_p

ath

String If

log.streams[@].log_type

is "file" then

log.streams[@].log_path

is the path to a file on file

system where logs are

written.

If

log.streams[@].log_type

is "syslog" then

log.streams[@].log

_path can be

[tcp/udp]://host:

port where host:port

is the host and port

to a remote syslog

server that supports

TCP or UDP protocol.

log.streams[@].log

_path can be

"local" to write log

to local syslog server

(Linux only).

Optional Location where logs are

written.

user

.name

String Optional User name for the initial

administrator user account.

user.

passw

ord

String Optional Password for the initial

administrator user account.

user.

email

String Basic email format, a string

starts with non

whitespace /non @

characters, contains one

@ symbol, and ends with

non whitespace /non @

characters.

Optional E-mail address for the

initial administrator user

account.

33

Configuration file

After successfully installing, MDDC Identity Service generates a configuration file with changeable

settings at the following location

Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Identity

Service\mddc_identity_service.yml

Linux: /etc/mddc-identity-service/mddc_identity_service.yml

Sample

Key

path

Value

type Accepted values Required Description

user.

apike

y

String string of exactly 36

characters composed of

uppercase and lowercase

letters (A-Z, a-z) and digits

(0-9)

Optional API key for the initial

administrator user account.

Info

The service must be restarted to take the new configurations into effect.

Warning

database.host , database.port , database.user , and database.password should be

updated with the appropriate values of your Postgres host/IP, port, username, and password.

Info

OpenSSL or a similar tool (e.g., ssh-keygen) can create a pair of public and private keys in

X.509 format.

yaml

34

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#configuration-file
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-identity-service#sample

database:
 host: "your_postgres_host"
 port: 5432
 user: "your_postgres_username"
 password: "your_postgres_admin_password"
secure:
 connection_key: "1234abcd" # [0-9a-zA-Z]{4,64}
 certificate: |
 -----BEGIN CERTIFICATE-----

MIIF5jCCA86gAwIBAgIJANq50IuwPFKgMA0GCSqGSIb3DQEBCwUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GA1UECAwHRXJld2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZD
Eb

MBkGA1UECgwSbGlid2Vic29ja2V0cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3
Qx

HzAdBgkqhkiG9w0BCQEWEG5vbmVAaW52YWxpZC5vcmcwIBcNMTgwMzIwMDQxNj
A3

WhgPMjExODAyMjQwNDE2MDdaMIGGMQswCQYDVQQGEwJHQjEQMA4GA1UECAwHRX
Jl

d2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZDEbMBkGA1UECgwSbGlid2Vic29ja2
V0

cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3QxHzAdBgkqhkiG9w0BCQEWEG5vbm
VA

aW52YWxpZC5vcmcwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCjYt
uW

aICCY0tJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAmHKnSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSU0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+
m6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
WQ

35

Ujy5N8pSNp7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK4l2pHNuC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFI
BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqn
V0

nPN1IMSnzXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTvP/AuehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
QU

9mYU23tW2zsomkKTAXarjr2vjuswHwYDVR0jBBgwFoAU9mYU23tW2zsomkKTAX
ar

jr2vjuswDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAgEANjIBMr
ow

YNCbhAJdP7dhlhT2RUFRdeRUJD0IxrH/hkvb6myHHnK8nOYezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z26O0uWVk+7DNNLH9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsiL6Ul6cy0QlTJWKVLEUQQ6yda582e23J1AXqtqFcpfoE
34

H3afEiGy882b+ZBiwkeV+oq6XVF8sFyr9zYrv9CvWTYlkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDR0aRLRlvxUa9dHGFHLICG34Juq5Ai6lM1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
2g

1WpTHlumlClZeP+G/jkSyDwqNnTu1aodDmUa4xZodfhP1HWPwUKFcq8oQr148Q
YA

AOlbUOJQU7QwRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUU1WjMbWg6
Gg

mnIZLRerQCu1Oozr87rOQqQakPkyt8BUSNK3K42j2qcfhAONdRl8Hq8Qs5pupy
+s

36

8sdCGDlwR3JNCMv6u48OK87F4mcIxhkSefFJUFII25pCGN5WtE4p5l+9cnO1Gr
IX
 e2Hl/7M0c/lbZ4FvXgARlex2rkgS0Ka06HE=
 -----END CERTIFICATE-----

 private_key: |
 -----BEGIN PRIVATE KEY-----

MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQCjYtuWaICCY0
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpoR8Di3DAm
HK

nSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
ZZ

toGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SU

0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK4l2p
HN

uC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFIBKIzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqnV0nPN1IM
Sn

zXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAoICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di7oZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg0ewLdBCOZVw+wPABlaqz+0UOiSMMftp
k9

37

fz9JwGd8ERyBsT+tk3Qi6D0vPZVsC1KqxxL/cwIFd3Hf2ZBtJXe0KBn1pktWht
5A

Kqx9mld2Ovl7NjgiC1Fx9r+fZw/iOabFFwQA4dr+R8mEMK/7bd4VXfQ1o/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBtODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKTl
Q8

YZkpIcLNVLw0usoGYHFm2rvCyEVlfsE3Ub8cFyTFk50SeOcF2QL2xzKmmbZEpX
gl

xBHR0hjgon0IKJDGfor4bHO7Nt+1Ece8u2oTEKvpz5aIn44OeC5mApRGy83/0b
vs

esnWjDE/bGpoT8qFuy+0urDEPNId44XcJm1IRIlG56ErxC3l0s11wrIpTmXXck
qw

zFR9s2z7f0zjeyxqZg4NTPI7wkM3M8BXlvp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgHl24nTg00UH1OjZsABAoIBAQDOxftSDbSqGytcWqPYP3SZHAWDA0O4ACEM+e
Cw

au9ASutl0IDlNDMJ8nC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40QdykllTzTVROqmP8+efreIvqlzHmuqaGfGs5oTkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qa++xh5mfE25c+M9fiIBTiNSo4lTxWMBShnK8xrGaMEmN7W0qTMb
FH

PgQz5FcxRjCCqwHilwNBeLDTp/ZECEB7y34khVh531mBE2mNzSVIQcGZP1I/Dv
Xj

W7UUNdgFwii/GW+6M0uUDy23UVQpbFzcV8o1C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6WxOKjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Zo19BowytN+t
r6

2ZFoIBA9Ubc9esEAU8l3fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOmbSUhN3PG
2m

39I802u0fFNVQCJKhx1m1MFFLOu7lVcDS9JN+oYVPb6MDfBLm5jOiPuYkFZ4gH

38

79

J7gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw
DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYc0rlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7AoIBAGKzKIMDXdCxBWKhNYJ8z7hiItNl1IZZMW2TPUiY0rl6ya
Ch

BVXjM9W0r07QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfXO9o9uIYLokr
WQ

x1dBl5UnuTLDqw8bChq7O5y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZEf
HI

UlGdNVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns6oDs6Tb9AECggEBAJYzd+SOYo26iBu3nw
3L

65uEeh6xou8pXH0Tu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7TOjt41UdqIKO8vN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCyExIELOuzWAMKzg7CAiIlNS9foWeLyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9vK9yrwF6X44ItRoOJafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLq+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt/8yvPflS+xv3kg/ZBvR9JB1In2n3rUCYYD47ReKFqJ03Vmq5C9
nY

56s9w7OUO8perBXlJYmKZQhO4293lvxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTW0LGVCpjcQoaKvymAoCmAs8V2o
Mr

39

Ziw1YQ9uOUoWwOqm1wZqmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDOD0aqkSY
3E

NqOvbCV1/oUpRi3076khCoAXI1bKSn/AvR3KDP14B5toHI/F5OTSEiGhhHesgR
rs
 fBrpEY1IATtPq1taBZZogRqI3rOkkPk=
 -----END PRIVATE KEY-----

40

MetaDefender Distributed Cluster Worker

Ignition file

To install MetaDefender Distributed Cluster (MDDC) Worker server, ignition file in YML format is

required at the following location:

Windows: C:\opswat\mddc_worker.yml

Linux: /etc/opswat/mddc_worker.yml

The ignition file includes fields:

Info

The ignition file is required only for a clean installation.

The following fields are essential for the ignition file:

secure.connection_key

secure.private_key

secure.certificate

41

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#ignition-file

Key

path

Value

type Accepted values Required Description

sec

ure.

conn

ecti

on_

key

String A string from 4 to 64 character long

containing digits from 0 to 9 and

characters from a/A to z/Z

Required An arbitrary string

that enables clients

to connect to the

server.

Use this value as

input when adding a

MDDC Worker in the UI

of the MDDC Control

Center.

sec

ure.

priv

ate

_ke

y

String Required Content of private key

in X509 format.

sec

ure.

cert

ifi

cat

e

String Required Content of certificate

in X509 format.

res

t.h

ost

String Optional IP address (V4/V6) or

host where the server

resides on. Default

value is '*'

Notes: value

'*' allows the

service to accept

connections from all

network interfaces.

To bind the service to

a specific interface,

specify its IP address

or domain name.
For

example, to listen on

all IPv4 interfaces, set

the host to 0.0.0.0

42

Configuration file

Key

path

Value

type Accepted values Required Description

res

t.p

ort

Number A string from 4 to 64 character long

containing digits from 0 to 9 and

characters from a/A to z/Z

Optional The port where the

server resides on.

Default value is 8893

log

.str

eams

[@].

log_

typ

e

String file

syslog

Optional Type of log device.

log

.str

eams

[@].

log_

lev

el

String dump

debug

info

warning

error

Optional Level of log message.

log

.str

eams

[@].

log_

pat

h

String If log.streams[@].log_type is

"file" then

log.streams[@].log_path is the

path to a file on file system where

logs are written.

If log.streams[@].log_type is

"syslog" then

log.streams[@].log_path

can be

[tcp/udp]://host:port

where host:port is the host

and port to a remote syslog

server that supports TCP or

UDP protocol.

log.streams[@].log_path

can be "local" to write log

to local syslog server (Linux

only).

Optional Location where logs

are written.

43

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#configuration-file

After successfully installing, MDDC Worker generates a configuration file with changeable

settings at the following location::

Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster

Worker\mddc_worker.yml

Linux: /etc/mddc-worker/mddc_worker.yml

Sample

Info

The service must be restarted to take the new configurations into effect.

Info

OpenSSL or a similar tool (e.g., ssh-keygen) can create a pair of public and private keys in

X509 format.

yaml

44

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-worker#sample

secure:
 connection_key: 1234abcd
 private_key: |
 -----BEGIN PRIVATE KEY-----

MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQCjYtuWaICCY0
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpoR8Di3DAm
HK

nSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
ZZ

toGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SU

0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK4l2p
HN

uC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFIBKIzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqnV0nPN1IM
Sn

zXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAoICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di7oZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg0ewLdBCOZVw+wPABlaqz+0UOiSMMftp
k9

fz9JwGd8ERyBsT+tk3Qi6D0vPZVsC1KqxxL/cwIFd3Hf2ZBtJXe0KBn1pktWht
5A

45

Kqx9mld2Ovl7NjgiC1Fx9r+fZw/iOabFFwQA4dr+R8mEMK/7bd4VXfQ1o/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBtODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKTl
Q8

YZkpIcLNVLw0usoGYHFm2rvCyEVlfsE3Ub8cFyTFk50SeOcF2QL2xzKmmbZEpX
gl

xBHR0hjgon0IKJDGfor4bHO7Nt+1Ece8u2oTEKvpz5aIn44OeC5mApRGy83/0b
vs

esnWjDE/bGpoT8qFuy+0urDEPNId44XcJm1IRIlG56ErxC3l0s11wrIpTmXXck
qw

zFR9s2z7f0zjeyxqZg4NTPI7wkM3M8BXlvp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgHl24nTg00UH1OjZsABAoIBAQDOxftSDbSqGytcWqPYP3SZHAWDA0O4ACEM+e
Cw

au9ASutl0IDlNDMJ8nC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40QdykllTzTVROqmP8+efreIvqlzHmuqaGfGs5oTkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qa++xh5mfE25c+M9fiIBTiNSo4lTxWMBShnK8xrGaMEmN7W0qTMb
FH

PgQz5FcxRjCCqwHilwNBeLDTp/ZECEB7y34khVh531mBE2mNzSVIQcGZP1I/Dv
Xj

W7UUNdgFwii/GW+6M0uUDy23UVQpbFzcV8o1C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6WxOKjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Zo19BowytN+t
r6

2ZFoIBA9Ubc9esEAU8l3fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOmbSUhN3PG
2m

39I802u0fFNVQCJKhx1m1MFFLOu7lVcDS9JN+oYVPb6MDfBLm5jOiPuYkFZ4gH
79

J7gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw

46

DC

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYc0rlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7AoIBAGKzKIMDXdCxBWKhNYJ8z7hiItNl1IZZMW2TPUiY0rl6ya
Ch

BVXjM9W0r07QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfXO9o9uIYLokr
WQ

x1dBl5UnuTLDqw8bChq7O5y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZEf
HI

UlGdNVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns6oDs6Tb9AECggEBAJYzd+SOYo26iBu3nw
3L

65uEeh6xou8pXH0Tu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7TOjt41UdqIKO8vN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCyExIELOuzWAMKzg7CAiIlNS9foWeLyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9vK9yrwF6X44ItRoOJafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLq+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt/8yvPflS+xv3kg/ZBvR9JB1In2n3rUCYYD47ReKFqJ03Vmq5C9
nY

56s9w7OUO8perBXlJYmKZQhO4293lvxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTW0LGVCpjcQoaKvymAoCmAs8V2o
Mr

Ziw1YQ9uOUoWwOqm1wZqmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDOD0aqkSY
3E

47

NqOvbCV1/oUpRi3076khCoAXI1bKSn/AvR3KDP14B5toHI/F5OTSEiGhhHesgR
rs
 fBrpEY1IATtPq1taBZZogRqI3rOkkPk=
 -----END PRIVATE KEY-----
 certificate: |
 -----BEGIN CERTIFICATE-----

MIIF5jCCA86gAwIBAgIJANq50IuwPFKgMA0GCSqGSIb3DQEBCwUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GA1UECAwHRXJld2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZD
Eb

MBkGA1UECgwSbGlid2Vic29ja2V0cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3
Qx

HzAdBgkqhkiG9w0BCQEWEG5vbmVAaW52YWxpZC5vcmcwIBcNMTgwMzIwMDQxNj
A3

WhgPMjExODAyMjQwNDE2MDdaMIGGMQswCQYDVQQGEwJHQjEQMA4GA1UECAwHRX
Jl

d2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZDEbMBkGA1UECgwSbGlid2Vic29ja2
V0

cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3QxHzAdBgkqhkiG9w0BCQEWEG5vbm
VA

aW52YWxpZC5vcmcwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCjYt
uW

aICCY0tJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAmHKnSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSU0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+
m6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
WQ

Ujy5N8pSNp7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK4l2pHNuC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFI

48

BK

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqn
V0

nPN1IMSnzXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTvP/AuehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
QU

9mYU23tW2zsomkKTAXarjr2vjuswHwYDVR0jBBgwFoAU9mYU23tW2zsomkKTAX
ar

jr2vjuswDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAgEANjIBMr
ow

YNCbhAJdP7dhlhT2RUFRdeRUJD0IxrH/hkvb6myHHnK8nOYezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z26O0uWVk+7DNNLH9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsiL6Ul6cy0QlTJWKVLEUQQ6yda582e23J1AXqtqFcpfoE
34

H3afEiGy882b+ZBiwkeV+oq6XVF8sFyr9zYrv9CvWTYlkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDR0aRLRlvxUa9dHGFHLICG34Juq5Ai6lM1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
2g

1WpTHlumlClZeP+G/jkSyDwqNnTu1aodDmUa4xZodfhP1HWPwUKFcq8oQr148Q
YA

AOlbUOJQU7QwRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUU1WjMbWg6
Gg

mnIZLRerQCu1Oozr87rOQqQakPkyt8BUSNK3K42j2qcfhAONdRl8Hq8Qs5pupy
+s

8sdCGDlwR3JNCMv6u48OK87F4mcIxhkSefFJUFII25pCGN5WtE4p5l+9cnO1Gr
IX

49

 e2Hl/7M0c/lbZ4FvXgARlex2rkgS0Ka06HE=
 -----END CERTIFICATE-----

50

MetaDefender Distributed Cluster Control

Center

Ignition file

To install MetaDefender Distributed Cluster Control (MDDC) Center server, ignition file in YML format

is required at the following location:

Windows: C:\opswat\mddc_control_center.yml

Linux: /etc/opswat/mddc_control_center.yml

The ignition file includes fields:

Info

The ignition file is required only for a clean installation.

The following fields are essential for the ignition file:

identity.host

identity.port

identity.connection_key

database.host

database.port

database.user

database.password

secure.encryption_key

51

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#ignition-file

Key

path

Value

type Accepted values Required Description

identit

y.host

String Required IP address of the server

where MDDC Identity Service

server locates.

identit

y.port

String Required Port of MDDC Identity Service

server is listening for

connections from clients.

identit

y.conne

ction_k

ey

String A string from 4 to 64

character long

containing digits from

0 to 9 and characters

from a/A to z/Z

Required The access key required to

connect to the MDDC Identity

Service server, ensuring it

matches the value used by

the server.

databas

e.host

String Required IP address / domain name of

the server where PostgreSQL

server locates.

databas

e.port

Number Required Port of PostgreSQL server is

listening for connections

from clients.

databas

e.user

String Required PostgreSQL server's user.

SUPERUSER privilege is

required to setup the server's

database and extensions for

the first time.

databas

e.passw

ord

String Required PostgreSQL server's user

credentials.

secure.

encrypt

ion_key

String A 32-character plain

text composed of

characters 'a'-'z' and

digits '0'-'9'.

Required The encryption key is used to

encrypt the sensitive data in

the database.

rest.p

ort

Number Optional The port where the server

resides on. Default value is

8892

rest.lo

g_path

String Optional Location where logs are

written.

52

Key

path

Value

type Accepted values Required Description

rest.lo

g_level

String dump

debug

info

warning

error

Optional Level of log message.

log.str

eams[@]

.log_ty

pe

String file

syslog

Optional Type of log device.

log.str

eams[@]

.log_le

vel

String dump

debug

info

warning

error

Optional Level of log message.

53

Configuration file

After successfully installing, MDDC Control Center generates a configuration file with changeable

settings at the following location:

Key

path

Value

type Accepted values Required Description

log.str

eams[@]

.log_pa

th

String If

log.streams[@].log_

type is "file" then

log.streams[@].log_

path is the path to a

file on file system

where logs are written.

If

log.streams[@].log_

type is "syslog" then

log.streams[@]

.log_path can

be

[tcp/udp]://ho

st:port where

host:port is the

host and port to

a remote syslog

server that

supports TCP or

UDP protocol.

log.streams[@]

.log_path can

be "local" to

write log to local

syslog server

(Linux only).

Optional Location where logs are

written.

Warning

Avoid using the loopback IP address (such as localhost or 127.0.0.1) for key

identity.host .

It may prevent MDDC API Gateway from successfully establishing a connection to MDDC

Identity Service.

54

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#configuration-file

Windows: C:\Program Files\OPSWAT\MetaDefender Distributed Cluster Control

Center\mddc_control_center.yml

Linux: /etc/mddc-control-center/mddc_control_center.yml

Sample

Info

The service must be restarted to take the new configurations into effect.

Warning

database.host , database.port , database.user , and database.password should be

updated with the appropriate values of your Postgres host/IP, port, username, and password.

identity.host should be updated with the appropriate host or IP of your MDDC Identity

Service.

yaml

database:
 host: "your_postgres_host_ip"
 port: 5432
 user: "your_postgres_username"
 password: "your_postgres_admin_password"
identity:
 host: "your_mddc_identity_service_host_ip"
 port: 8891
 connection_key: "1234abcd"
secure:
 encryption_key: "12345678123456781234567812345678" # [a-z0-
9]{32}

55

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-config-control-center#sample

Container-Based Setup

Setup order requirement

Please follow the installation order to complete the system setup properly.

Prerequisite

Before running the setup, please check (System Requirements) to install all required

dependencies of MetaDefender Distributed Cluster (MDDC).

56

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#setup-order-requirement
https://www.opswat.com/-https://app.developerhub.io/metadefender-distributed-cluster/v2.2.0/installation/mddc-system-requirements

Image name and version

All the images can be found at OPSWAT Docker Hub with the following information:

MDDC Identity Service

Order Service Notes

1 Redis, RabbitMQ, PostgreSQL and

MDDC Identity Service
Could be setup in parallel in any order

among them.

Make sure they are all fully functional

and accessible before proceeding to the

next setup order #2.

2 MDDC Control Center
Ensure it's able to connect to those

services in #1

Make sure it is fully functional and

accessible.

3 MDDC File Storage
Ensure they're able to connect to MDDC

Control Center

Make sure it is fully functional and

accessible.

4 MDDC Worker for MDDC API

Gateway and MDDC Worker for

MetaDefender Core

Could be setup in parallel in any order

among them.

Ensure they're able to connect to MDDC

Control Center

Make sure they are all fully functional

and accessible.

Info

version is the currently release version.

Docker image bash

57

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#image-name-and-version

MDDC File Storage

MDDC Control Center

MDDC Worker for MDDC API Gateway

MDDC Worker for MetaDefender Core

Environment variables

1. MDDC Identity Service

opswat/metadefender-distributed-cluster:identity-service-
<version>-debian-12

Docker image bash

opswat/metadefender-distributed-cluster:file-storage-
<version>-debian-12

Docker image bash

opswat/metadefender-distributed-cluster:control-center-
<version>-debian-12

Docker image bash

opswat/metadefender-distributed-cluster:worker-api-gateway-
<version>-debian-12

Docker image bash

opswat/metadefender-distributed-cluster:worker-core-<version>-
debian-12

58

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#environment-variables
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#1-mddc-identity-service

Environment Variable Necessity Description

MDDC_IDENTITY_SERVICE_DB_HOST Required Provide the database host for

MDDC Identity Service

MDDC_IDENTITY_SERVICE_DB_PORT Optional Provide the database port for

MDDC Identity Service
Default:

5432

MDDC_IDENTITY_SERVICE_DB_USER Required Provide the database user for

MDDC Identity Service

MDDC_IDENTITY_SERVICE_DB_PASSWORD Required Provide the database

password for MDDC Identity

Service

59

Environment Variable Necessity Description

MDDC_USER Required Define the information to

initiate the administrator

account.
This account is to

automatically do the following

tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center

if specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC

Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

60

Environment Variable Necessity Description

MDDC_PASSWORD Required Define the information to

initiate the administrator

account.
This account is to

automatically do the following

tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center

if specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC

Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

61

Environment Variable Necessity Description

MDDC_EMAIL Required Define the information to

initiate the administrator

account.
This account is to

automatically do the following

tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center

if specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC

Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

62

Environment Variable Necessity Description

MDDC_APIKEY Optional Define the information to

initiate the administrator

account.
This account is to

automatically do the following

tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center

if specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC

Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

MDDC_IDENTITY_SERVICE_CONNECTION_KEY Required Define the connection key in

order to register to Control

Center.
Must be 4 to 64

characters long, using only

letters and digits (0–9, a–z, A–

Z).

63

Start MDDC Identity Service container with docker run:

2. MDDC File Storage

Environment Variable Necessity Description

MDDC_IDENTITY_SERVICE_PORT Optional Define the expose port for

MDDC Identity Service
Default:

8891

LOG_LEVEL Optional Define the log level. Default

value: info

Accepted values:

info / debug / error / warning

bash

docker run -d --name mddc-identity-service \
	 -e MDDC_IDENTITY_SERVICE_DB_HOST=<your_postgres_host>
\
 -e MDDC_IDENTITY_SERVICE_DB_USER=<your_postgres_user> \
 -e MDDC_IDENTITY_SERVICE_DB_PASSWORD=
<your_postgres_password> \
 -e MDDC_IDENTITY_SERVICE_CONNECTION_KEY=
<your_connection_key> \
 -e MDDC_USER=<your_mddc_admin_user> \
 -e MDDC_PASSWORD=<your_mddc_admin_password> \
 -e MDDC_EMAIL=<your_mddc_admin_email> \
 -p 8891:8891 opswat/metadefender-distributed-
cluster:identity-service-<version>-debian-12

64

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#2-mddc-file-storage

Environment Variable Necessity Description

MDDC_FILE_STORAGE_CONNECTION_KEY Required Define the connection key in order

to register to MDDC Control Center.

Must be 4 to 64 characters long,

using only letters and digits (0–9,

a–z, A–Z).

MDDC_FILE_STORAGE_PORT Optional Define the expose port for MDDC

File Storage. Default is 8890.

MDDC_FILE_STORAGE_HOST Optional Define the MDDC File Storage's

host address. If it's not specified,

it will get the container's internal

IP address.

LOG_LEVEL Optional Define the log level. Default value:

info .

Accepted values:

info / debug / error / warning .

MDDC_CONTROL_CENTER_HOST Required Provide the MDDC Control Center's

host address.

MDDC_CONTROL_CENTER_PORT Optional Provide the MDDC Control Center's

port. Default is 8892.

65

Environment Variable Necessity Description

MDDC_USER Required Define the information to initiate

the administrator account.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC

Control Center if specified.

Add Data Lake to MDDC

Control Center if specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage to

MDDC Control Center if

specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC

API Gateway installer to

MDDC Control Center, and

deploy MDDC API Gateway to

MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer

to MDDC Control Center, and

deploy MetaDefender Core to

MDDC Worker.

66

Environment Variable Necessity Description

MDDC_PASSWORD Required Define the information to initiate

the administrator account.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC

Control Center if specified.

Add Data Lake to MDDC

Control Center if specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage to

MDDC Control Center if

specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC

API Gateway installer to

MDDC Control Center, and

deploy MDDC API Gateway to

MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer

to MDDC Control Center, and

deploy MetaDefender Core to

MDDC Worker.

67

Start MDDC File Storage container with docker run.

Environment Variable Necessity Description

MDDC_APIKEY Optional Define the information to initiate

the administrator account.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC

Control Center if specified.

Add Data Lake to MDDC

Control Center if specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage to

MDDC Control Center if

specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC

API Gateway installer to

MDDC Control Center, and

deploy MDDC API Gateway to

MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer

to MDDC Control Center, and

deploy MetaDefender Core to

MDDC Worker.

Info

Persistent storage is located at /opt/opswat/mddc-file-storage . If end-users require data

to be retained across container lifecycles, they must mount a volume to this path with 777

permissions to ensure full read/write access for all processes.

bash

68

3. MDDC Control Center

docker run -d --name mddc-file-storage \
	 -e MDDC_FILE_STORAGE_CONNECTION_KEY=
<your_connection_key> \
 -e MDDC_FILE_STORAGE_PORT=8890 \
 -e MDDC_CONTROL_CENTER_HOST=<control-center_host_address> \
 -e MDDC_USER=<your_mddc_admin_user> \
 -e MDDC_PASSWORD=<your_mddc_admin_password> \
 -p 8890:8890 opswat/metadefender-distributed-cluster:file-
storage-<version>-debian-12

69

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#3-mddc-control-center

Environment Variable Necessity Description

MDDC_LAKE_DB_HOST Optional Provide the database host for

Data Lake.
In case that the

end-user does not have the

Data Lake, it's required to

provide this variable to

automate the database

preparation.

MDDC_LAKE_DB_PORT Optional Provide the database port for

Data Lake. Default is 5432.

MDDC_LAKE_DB_USER Optional Provide the database user for

Data Lake.
In case that the

end-user does not have the

Data Lake, it's required to

provide this variable to

automate the database

preparation.

MDDC_LAKE_DB_PASSWORD Optional Provide the database

password for Data Lake.
In

case that the end-user does

not have the Data Lake, it's

required to provide this

variable to automate the

database preparation.

MDDC_WAREHOUSE_DB_HOST Optional Provide the database host for

Data Warehouse.
In case that

the end-user does not have

the Data Warehouse, it's

required to provide this

variable to automate the

database preparation.

MDDC_WAREHOUSE_DB_PORT Optional Provide the database port for

Data Warehouse. Default is

5432.

MDDC_WAREHOUSE_DB_USER Optional Provide the database user for

Data Warehouse.
In case that

the end-user does not have

the Data Warehouse, it's

required to provide this

variable to automate the

database preparation.

70

Environment Variable Necessity Description

MDDC_WAREHOUSE_DB_PASSWORD Optional Provide the database

password for Data Warehouse.

In case that the end-user does

not have the Data Warehouse,

it's required to provide this

variable to automate the

database preparation.

MDDC_CACHE_HOST Optional Provide the caching host

(Redis).

MDDC_CACHE_PORT Optional Provide the caching port

(Redis).

MDDC_CACHE_USER Optional Provide the caching username

(Redis).
If the end-user does

not provide it, Redis will be

added without authentication.

MDDC_CACHE_PASSWORD Optional Provide the caching password

(Redis).
If the end-user does

not provide it, Redis will be

added without authentication.

Do not support double quotes

(") and backslash (\) in the

password.

MDDC_BROKER_HOST Optional Provide the broker host

(RabbitMQ).

MDDC_BROKER_PORT Optional Provide the broker port

(RabbitMQ).

MDDC_BROKER_USER Optional Provide the broker username

(RabbitMQ).

MDDC_BROKER_PASSWORD Optional Provide the broker password

(RabbitMQ).

MDDC_CONTROL_CENTER_DB_HOST Required Provide the database host for

MDDC Control Center.

MDDC_CONTROL_CENTER_DB_PORT Optional Provide the database port for

MDDC Control Center. Default is

5432.

71

Environment Variable Necessity Description

MDDC_CONTROL_CENTER_DB_USER Required Provide the database

username for MDDC Control

Center.

MDDC_CONTROL_CENTER_DB_PASSWORD Required Provide the database

password for MDDC Control

Center.

MDDC_USER Required Provide the administrator

account that is defined in

MDDC Identity Service.
This

account is to automatically do

the following tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center if

specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

72

Environment Variable Necessity Description

MDDC_PASSWORD Required Provide the administrator

account that is defined in

MDDC Identity Service.
This

account is to automatically do

the following tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center if

specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

73

Environment Variable Necessity Description

MDDC_APIKEY Optional Provide the administrator

account that is defined in

MDDC Identity Service.
This

account is to automatically do

the following tasks:

Add Redis to MDDC

Control Center if

specified.

Add RabbitMQ to MDDC

Control Center if

specified.

Add Data Lake to MDDC

Control Center if

specified.

Add Data Warehouse to

MDDC Control Center if

specified.

Add MDDC File Storage

to MDDC Control Center if

specified.

Add MDDC Worker to

MDDC Control Center,

upload MDDC API

Gateway installer to

MDDC Control Center,

and deploy MDDC API

Gateway to MDDC Worker.

Add MDDC Worker to

MDDC Control Center,

upload MetaDefender

Core installer to MDDC

Control Center, and

deploy MetaDefender

Core to MDDC Worker.

MDDC_IDENTITY_SERVICE_HOST Required Provide the MDDC Identity

Service host in order to add it

to MDDC Control Center.

MDDC_IDENTITY_SERVICE_PORT Optional Provide the IMDDC dentity

Service port in order to add it to

MDDC Control Center. Default is

8891.

74

Start MDDC Control Center container with Docker run.

Environment Variable Necessity Description

MDDC_IDENTITY_SERVICE_CONNECTION_KEY Required Provide the MDDC Identity

Service connection key in order

to add it to MDDC Control

Center.
Must be 4 to 64

characters long, using only

letters and digits (0–9, a–z, A–

Z).

MDDC_CONTROL_CENTER_ENCRYPTION_KEY Required Define the encryption key for

communication between MDDC

Control Center and the

services.
Must be 32

characters long and contain

only lowercase letters (a–z) and

digits (0–9).

MDDC_CERT_PATH Optional Provide the directory path that

contains the certificate and

private key in order to enable

https Note: when provide this

variable, it's supposed to

mount this path to /certs/

as volume
For example: --

volume /your-path:/certs

Note: In cases where SSL fails

to enable due to the File

Storage service not being

ready, the end-user can either

restart the MDDC Control Center

or manually activate SSL as a

workaround.

LOG_LEVEL Optional Define the log level. Default

value: info .

Accepted values:

info / debug / error / warning

.

bash

75

4. MDDC Worker for API Gateway

docker run -d --name mddc-control-center \
	 -e MDDC_CONTROL_CENTER_DB_HOST=<your_postgre_host> \
 -e MDDC_CONTROL_CENTER_DB_USER=<your_postgre_user> \
 -e MDDC_CONTROL_CENTER_DB_PASSWORD=<your_postgre_password> \
 -e MDDC_IDENTITY_SERVICE_HOST=
<your_identity_service_host_address> \
 -e MDDC_USER=<your_mddc_admin_user> \
 -e MDDC_PASSWORD=<your_mddc_admin_password> \
 -e MDDC_IDENTITY_SERVICE_CONNECTION_KEY=
<your_connection_key> \
 -e MDDC_CONTROL_CENTER_ENCRYPTION_KEY=<your_encryption_key>
\
 -e MDDC_CERT_PATH=/certs \
 -v /new-certificates:/certs \
 -p 8892:8892 opswat/metadefender-distributed-
cluster:control-center-<version>-debian-12

76

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#4-mddc-worker-for-api-gateway

Environment Variable Necessity Description

MDDC_WORKER_CONNECTION_KEY Required Define the connection key in order to

register to MDDC Control Center.
Must

be 4 to 64 characters long, using only

letters and digits (0–9, a–z, A–Z).

MDDC_WORKER_PORT Optional Define the expose worker's port.

Default is 8893.

MDDC_WORKER_HOST Optional Define the worker's host address. If

it's not specified, it will get the

container's internal IP address.

MDDC_CONTROL_CENTER_HOST Required Provide the MDDC Control Center's host

address.

MDDC_CONTROL_CENTER_PORT Optional Provide the MDDC Control Center's port

Default is 8892.

77

Environment Variable Necessity Description

MDDC_USER Required Provide the administrator account that

is defined in MDDC Identity Service.
It

can be optional if the end-user

provides the MDDC_APIKEY.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

78

Environment Variable Necessity Description

MDDC_PASSWORD Required Provide the administrator account that

is defined in MDDC Identity Service.
It

can be optional if the end-user

provides the MDDC_APIKEY.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

79

Environment Variable Necessity Description

MDDC_APIKEY Optional Provide the administrator account that

is defined in MDDC Identity Service.

This account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

MDDC_API_GATEWAY_PORT Optional Define the expose port to scan files via

MDDC API Gateway. Default is 8899.

LOG_LEVEL Optional Define the log level. Default value:

info .

Accepted values:

info / debug / error / warning .

Info

If multiple MDDC API Gateway containers are deployed on the same host, make sure their

ports are configured to avoid conflicts.

80

Start MDDC Worker for MDDC API Gateway container with Docker run.

5. MDDC Worker for Core

bash

docker run -d --name mddc-worker-api-gateway \
	 -e MDDC_WORKER_CONNECTION_KEY=<your_connection_key> \
 -e MDDC_WORKER_HOST=<your_worker_host_address> \
 -e MDDC_CONTROL_CENTER_HOST=
<your_control_center_host_address> \
 -e MDDC_USER=<your_mddc_admin_user> \
 -e MDDC_PASSWORD=<your_mddc_admin_password> \
 -e MDDC_API_GATEWAY_PORT=8899 \
 -p 8893:8893 -p 8899:8899 opswat/metadefender-distributed-
cluster:worker-api-gateway-<version>-debian-12

81

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#5-mddc-worker-for-core

Environment Variable Necessity Description

MDDC_WORKER_CONNECTION_KEY Required Define the connection key in order to

register to MDDC Control Center.
Must

be 4 to 64 characters long, using only

letters and digits (0–9, a–z, A–Z).

MDDC_WORKER_PORT Optional Define the expose worker's port.

Default is 8893.

MDDC_WORKER_HOST Optional Define the worker's host address. If

it's not specified, it will get the

container's internal IP address.

MDDC_CONTROL_CENTER_HOST Required Provide the MDDC Control Center's host

address.

MDDC_CONTROL_CENTER_PORT Optional Provide the MDDC Control Center's

port.
Default is 8892.

82

Environment Variable Necessity Description

MDDC_USER Required Provide the administrator account that

is defined in MDDC Identity Service.
It

can be optional if the end-user

provides the MDDC_APIKEY.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

83

Environment Variable Necessity Description

MDDC_PASSWORD Required Provide the administrator account that

is defined in MDDC Identity Service.
It

can be optional if the end-user

provides the MDDC_APIKEY.
This

account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

84

Environment Variable Necessity Description

MDDC_APIKEY Optional Provide the administrator account that

is defined in MDDC Identity Service.

This account is to automatically do the

following tasks:

Add Redis to MDDC Control

Center if specified.

Add RabbitMQ to MDDC Control

Center if specified.

Add Data Lake to MDDC Control

Center if specified.

Add Data Warehouse to MDDC

Control Center if specified.

Add MDDC File Storage to MDDC

Control Center if specified.

Add MDDC Worker to MDDC

Control Center, upload MDDC API

Gateway installer to MDDC

Control Center, and deploy MDDC

API Gateway to MDDC Worker.

Add MDDC Worker to MDDC

Control Center, upload

MetaDefender Core installer to

MDDC Control Center, and deploy

MetaDefender Core to MDDC

Worker.

LOG_LEVEL Optional Define the log level. Default value:

info .

Accepted values:

info / debug / error / warning .

MDDC_LICENSE_KEY Optional Provide the license key to activate

MetaDefender Core.

MDDC_LICENSE_DESCRIPTION Optional Define description of the license key.

Info

If multiple MetaDefender Core containers are deployed on the same host, make sure their

ports and hosts are configured to avoid conflicts.

85

Start MDDC Worker for MetaDefender Core container with Docker run.

Start MetaDefender Distributed Cluster with Docker

Compose

1. Create a local file named docker-compose.yaml and copy the following content to this file:

bash

docker run -d --name mddc-worker-core \
	 -e MDDC_WORKER_CONNECTION_KEY=<your_connection_key> \
 -e MDDC_WORKER_HOST=<your_core_host_address> \
 -e MDDC_CONTROL_CENTER_HOST=
<your_control_center_host_address> \
 -e MDDC_USER=<your_mddc_admin_user> \
 -e MDDC_PASSWORD=>your_mddc_admin_password> \
 -p 8893:8893 opswat/metadefender-distributed-cluster:worker-
core-<version>-debian-12

yaml yaml

86

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#start-metadefender-distributed-cluster-with-docker-compose

services:
 redis:
 image: redis:7.0.5
 container_name: redis
 ports:
 - "6379:6379"
 networks:
 - mddc
 rabbitmq:
 image: rabbitmq:3.13.0
 container_name: rabbitmq
 restart: always
 healthcheck:
 test: ["CMD", "rabbitmq-diagnostics", "-q","ping"]
 interval: 10s
 timeout: 10s
 retries: 30
 start_period: 20s
 environment:
 - RABBITMQ_DEFAULT_USER=admin
 - RABBITMQ_DEFAULT_PASS=admin
 ports:
 - "5672:5672"
 - "15672:15672"
 networks:
 - mddc
 postgres:
 image: postgres:14.17
 container_name: postgres
 ports:
 - 5432:5432
 networks:
 - mddc
 environment:
 - POSTGRES_USER=admin
 - POSTGRES_PASSWORD=admin
 healthcheck:
 test: ["CMD", "pg_isready", "-U", "admin", "-d",
"postgres"]
 interval: 10s
 timeout: 10s
 retries: 30
 identity-service:
 env_file:
 - .env.example
 image: opswat/metadefender-distributed-cluster:identity-
service-2.0.0-debian-12
 container_name: identity-service
 ports:

87

 - 8891:8891
 networks:
 - mddc
 deploy:
 restart_policy:
 condition: on-failure
 depends_on:
 postgres:
 condition: service_healthy
 restart: true
 file-storage:
 env_file:
 - .env.example
 image: opswat/metadefender-distributed-cluster:file-
storage-2.0.0-debian-12
 container_name: file-storage
 ports:
 - 8890:8890
 networks:
 - mddc
 deploy:
 restart_policy:
 condition: on-failure
 depends_on:
 postgres:
 condition: service_healthy
 restart: true
 control-center:
 env_file:
 - .env.example
 image: opswat/metadefender-distributed-cluster:control-
center-2.0.0-debian-12
 container_name: control-center
 ports:
 - 8892:8892
 networks:
 - mddc
 deploy:
 restart_policy:
 condition: on-failure
 healthcheck:
 test: ["CMD", "true"]
 interval: 60s
 start_period: 90s
 start_interval: 60s
 depends_on:
 - identity-service
 - redis
 - rabbitmq
 - file-storage

88

 worker-api-gateway:
 env_file:
 - .env.example
 image: opswat/metadefender-distributed-cluster:worker-api-
gateway-2.0.0-debian-12
 container_name: worker-api-gateway
 ports:
 - "8893"
 - 7777:7777
 networks:
 - mddc
 deploy:
 restart_policy:
 condition: on-failure
 healthcheck:
 test: ["CMD", "true"]
 interval: 5s
 timeout: 2s
 start_period: 30s
 depends_on:
 control-center:
 condition: service_healthy
 worker-core:
 env_file:
 - .env.example
 image: opswat/metadefender-distributed-cluster:worker-
core-2.0.0-debian-12
 container_name: worker-core
 ports:
 - "8008"
 networks:
 - mddc
 deploy:
 restart_policy:
 condition: on-failure
 depends_on:
 control-center:
 condition: service_healthy
 worker-api-gateway:
 condition: service_healthy

networks:
 mddc:
 driver: bridge
 ipam:
 config:
 - subnet: 10.0.0.0/24
 gateway: 10.0.0.1

89

2. Prepare an environment variable file named .env.example and provide with your own

values

3. Run the application with the command:

Known limitation

When the host experiences resource limitations or degraded performance, some

containers may fail to start properly. In such cases, restarting the container is

recommended to restore normal operation.

##Ensure to replace with your specific image tag

yaml

docker compose up -d

90

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-container-based-setup#known-limitation

Recommended Setup

Although it is possible to install Redis Caching Server, RabbitMQ Message Broker and Postgres

Database Server and MetaDefender Distributed Cluster (MDDC) File Storage on the same machine,

they should be installed separately on various machines to optimize their performance.

Redis Caching Server

The caching server consumes a large amount of memory while operating; hence, a machine with

ample and high-speed memory is best suited to this component.

RabbitMQ Message Broker

The broker is one of keys that powers MetaDefender Distributed Cluster architecture, it ensures

tasks are delivered to MetaDefender Core instances in an equitable manner, delivering a "broken"

task to a healthy MetaDefender Core instance and spreading tasks to new instances if more

MetaDefender Core instances are added to system. For that reason, the broker should be hosted

on a separate machine.

Postgres Database Server

MetaDefender Distributed Cluster database is split into three main clusters.

Data Lake stores scan results and other details related to requests such data_id , hashes, etc.

Since Data Lake is shared among MetaDefender Core and MDDC API Gateway instances, it should

be hosted on a large-volume and high-speed disk. The network is also essential to Data Lake; a

high-speed network is necessary.

Data Warehouse, which prepares materials for building executive reports, uses a single

connection to Data Lake and collects data periodically.

Since executive reports may be stored for a long period of time for MDDC Control Center to access,

Data warehouse should be hosted on a large-volume machine.

Control Center-related database, storing all user details, configurations and other settings.

MDDC Control Center database can be hosted on the same machine as Control Center.

MetaDefender Distributed Cluster File Storage

MDDC File Storage is shared among MetaDefender Core and MDDC API Gateway instances. The

server consumes a large amount of disk to store the submitted files from instances. Since all file-

related traffic goes through MDDC File Storage, a high speed network is essential. Rocky 9.0 is

recommended to host MDDC File Storage.

MetaDefender Distributed Cluster API Gateway

91

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#redis-caching-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#rabbitmq-message-broker
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#postgres-database-server
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-distributed-cluster-file-storage
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-distributed-cluster-api-gateway

Due to differences in Operating System and Nginx support on Windows and Linux, MDDC API

Gateway should be hosted on a Linux machine running Rocky 9.0 for high throughput of file

scan submissions.

MetaDefender Core

One of strong aspects of MetaDefender Distributed Cluster is that it can support a hybrid

architecture in which MDDC API Gateway and MDDC File Storage instances may be hosted on

Linux while MetaDefender Core instances can be on Windows. Therefore, based on customer

requirements, MetaDefender Core instances can be hosted on Windows or Linux machines.

Warning

It is recommended to setup all MetaDefender Core instances on Windows or on Linux.

Mixed OS run is unsupported.

92

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-recommended-setup#metadefender-core

License activation

MetaDefender Distributed Cluster supports two types of license activations:

Online Activation.

Offline Activation.

93

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation

Online Activation

MetaDefender Distributed Cluster (MDDC) supports seamless license activation for every deployed

MetaDefender Core instance. The license key must be provided to the MDDC Control Center and

will be activated on each individual MetaDefender Core instance either automatically during

deployment or manually at a later time. If necessary, multiple license keys may also be supplied.

Adding License

1. Sign in to MetaDefender Distributed Cluster Control Center console.

2. Go to Inventory > Licenses and select Add license .

3. Input your license key and click Add .

License Activation

Automatic activation during deployment

During the deployment process of MetaDefender Core instances, you can select a license key to

automatically activate on the instances being deployed.

Activation after deployment

94

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#adding-license
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-activation

After deploying MetaDefender Core instances, follow these steps to activate your license:

1. Sign in to MDDC Control Center console.

2. From the left side bar, go to Inventory > Licenses .

3. From the list of available licenses, choose the key you wish to use for activation.

4. Click Activate to apply the license key to the appropriate instance(s).

License Deactivation

Follow these steps to deactivate your license:

1. Sign in to MDDC Control Center console.

2. From the left side bar, select Inventory > Licenses .

3. From the list of available licenses, choose the key you wish to use for deactivation.

4. Click Deactivate to remove the license from all MetaDefender Core instances currently

activated with the license key.

Info

Once Activate is clicked, the license key will be applied to all unlicensed MetaDefender

Core instances. Ensure that your license quota is sufficient to cover all unlicensed

instances.

You can view the number of activated instances and available slots by selecting Details on

the license key. At the moment, Details can only be viewed after activation is successful.

95

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-deactivation

Info

Once deactivated, the license slots will become available and can be reassigned when

necessary.

When MetaDefender Core instances are undeployed through MDDC Control Center, their

associated licenses are automatically deactivated.

96

Offline Activation

Collect Deployment IDs

1. Sign in to MetaDefender Distributed Cluster (MDDC) Control Center console.

2. Go to Inventory > Licenses and select Offline License tab.

3. Select Deployment IDs of MetaDefender Core instances you prefer to activate.

4. Press Export at the top right corner and save the exported file to your location of choice.

Info

MetaDefender Distributed Cluster Control Center only displays the Deployment IDs of

MetaDefender Core instances that have not been activated thus far.

Info

The exported file includes a list of chosen Deployment IDs that will be used for activation in

the subsequent stage.

97

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#collect-deployment-ids

Activate license with Deployment ID

1. Sign in to MyOPSWAT with your account.

2. Navigate to License Management on the left side panel.

3. Click Activate License .

4. Fill out all necessary information, including your Activation Key, Deployment ID and

selection of the Package you require.

5. Click Activate .

6. Click Download and store the license file to your secure location.

Info

To collect the Deployment ID of a single MetaDefender Core instance, please:

1. Hover your mouse over the preferred Deployment ID to display the copy button.

2. Press the copy button.

3. Retain the copied Deployment ID and proceed to the next stage.

98

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-license-with-deployment-id
https://my.opswat.com/home

Activate MetaDefender Core instances with license files

1. Sign in to MDDC Control Center console.

2. Go to Inventory > Licenses and select Offline License tab.

3. Click Activate .

4. Drop the license files into the dash area for submission.

Info

The license file is associated with one unique Deployment ID. The users must carry out steps

3 to 6 for every deployment ID on their list.

99

https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-metadefender-core-instances-with-license-files

5. Click Confirm to complete.

6. MDDC Control Center activates MetaDefender Core instances associated with the provided

license files and displays their activation status.

7. Select an activated MetaDefender Core instance and press Details to view the license

details

100

101

Module update

MetaDefender Distributed Cluster (MDDC) introduces two modes of Module Update. To switch

between the modes, please sign in to MDDC Control Center console, navigate to Settings and

select Module Update tab.

Online module update

In online update mode, MDDC Control Center will base its checks on the activated licenses to

find and download the latest engine packages from OPSWAT online update infrastructure,

repeating this process every four hours.

Info

Online update mode is enabled by default.

102

https://www.opswat.com/docs/mddistributedcluster/installation/engine-package#online-module-update

All downloaded engine packages are verified and stored in MDDC File Storage for licensed

MetaDefender Core instances to pull, install, or upgrade on their end. Through this mechanism,

the instances cease to independently pull the engine packages from the update infrastructure,

conserving network bandwidth while enhancing their readiness.

Offline module update

In offline update mode, administrators must download the licensed engine packages from

MetaDefender Update Downloader and upload them manually to MDDC Control Center.

1. Sign in to MDDC Control Center console.

2. Go to Inventory > Modules .

3. Press Upload Package at the top right corner.

4. Choose your engine package files.

Info

Please reference here for more details about downloading engine packages from

MetaDefender Update Downloader.

Info

Update All is always disabled if Offline Update mode is selected in Settings > Module

Update .

103

https://www.opswat.com/docs/mddistributedcluster/installation/engine-package#offline-module-update
https://www.opswat.com/docs/mddownloader/operating/download-all-update-packages

5. Click Update to submit the package files.

6. Wait until engine packages are ready.

Info

Package files from various engines can be selected simultaneously.

104

7. Engine update statuses on MetaDefender Core instances can be monitored in Dashboard >

System Health > Worker Health .

Info

All uploaded engine packages are verified and stored in MDDC File Storage for licensed

MetaDefender Core instances to pull, install, or upgrade on their end.

105

High Availability

Overview

In MetaDefender Distributed Cluster (MDDC), critical components for its continuous operation

include RabbitMQ, Redis, Postgres, and MDDC File Storage. Any disruption of these components

will lead to an interruption in the scanning processes and result in a failed verdict for the

processed files. To prevent the interruption, high-availability solutions must be implemented on

the components.

A strategy for achieving high availability is the replication and redundancy of essential

components. The key concept is that if a single component fails, the redundant system takes

over seamlessly, avoiding any interruption in service. Following are guidelines to set up the high

availability solution on individual components and apply them in MetaDefender Distributed

Cluster.

High availability support for MDDC File Storage.

High availability support for RabbitMQ.

High availability support for Redis.

High availability support for Data lake.

106

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/configurations?mode=print&deployment_id=latest#overview
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha

High Availability support for File Storage

Key concept

The High Availability solution for MetaDefender Distributed Cluster (MDDC) File Storage is

implemented in this manner:

A file is stored across multiple MDDC File Storages by MDDC API Gateway or

MetaDefender Core.

MDDC API Gateway or MetaDefender Core must request all MDDC File Storage instances

for a file existence or a file download.

Setup Instructions

1. Setup MDDC File Storage instances on individual servers.

2. Sign to MDDC Control Center console with your Administrator account.

3. Navigate to Inventory > Services .

4. Expand the File Storage Service group.

5. Click Add service .

6. Enter the values for Name , Host , Port and Connection Key fields of individual MDDC File

Storage instances set up in Step 1.

7. Click the Check icon in the bottom right to complete.

Info

A minimum of three MDDC File Storage instances must be installed on separate hosts for

High Availability solution to function properly.

All MDDC File Storage instances must be of an identical version.

107

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha#key-concept
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-storage-high-ha#setup-instructions

8. Ensure all MDDC File Storage instances are healthy and reachable by MDDC Control

Center .

9. Click on the gear icon in the top left of File Storage Service group to configure the

minimum and maximum replicas.

Minimum replica: The minimum number of data copies that must be written for the

operation to succeed.

Maximum replica: The maximum of data copies stored across the system.

10. Click Save to complete.

Info

To balance performance and high availability efficiency, the minimum and maximum

replicas should be set to the following values:

Min replica = 2

Max replica = 3

108

109

High Availability support for RabbitMQ

RabbitMQ cluster

1. Install RabbitMQ nodes on servers.

2. Ensure each node can resolve its own hostname and those of the others.

Start Command Prompt on Windows or Terminal on Linux, and run the following

command to get hostname.

In Command Prompt on Windows or Terminal on Linux of any RabbitMQ node, and run the

following command to ping to the other using its hostname.

Info

A minimum of three RabbitMQ nodes must be installed on separate hosts for High

Availability solution to function properly.

An odd number of RabbitMQ nodes is required.

All RabbitMQ nodes must be of an identical version.

bash

Windows
> hostname

Debian/Ubuntu or Red Hat/Rocky
$ hostname

bash

Windows
> ping <other_node_hostname>

Debian/Ubuntu or Red Hat/Rocky
$ ping <other_node_hostname>

110

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#rabbitmq-cluster

3. On each RabbitMQ nodes, open the following ports.

4. Verify that the Erlang cookies of all RabbitMQ nodes are identical.

In Windows, access the specified locations to check the cookie contents.

In Linux, access the specified locations to check the cookie contents.

5. Select one node to be the leader of RabbitMQ cluster.

Default

port Process

5672 Used by MDDC Control Center, MDDC API Gateway and MetaDefender Core.

4369 Used by discovery daemon on each RabbitMQ nodes and rabbitmqctl tool.

25672 Used by each RabbitMQ nodes and rabbitmqctl tool to communicate to the

other nodes.

15672 Used by rabbitmq-management plugin.

Info

RabbitMQ nodes and rabbitmqctl tool use a cookie to determine whether they are allowed

to communicate with each other. For two nodes to be able to communicate they must have

the same shared secret called the Erlang cookie. The cookie is a string of alphanumeric

characters up to 255 characters in size.

Type Location

Server cookie C:\Windows\system32\config\systemprofile.erlang.cookie

Command line cookie C:\Users%USERNAME%.erlang.cookie

Type Location

Server cookie /var/lib/rabbitmq/.erlang.cookie

Command line cookie $HOME/.erlang.cookie

111

https://www.rabbitmq.com/docs/clustering#erlang-cookie

6. In Command Prompt on Windows or Terminal on Linux of the server hosting the leader,

run the following command to obtain its node name.

7. In Command Prompt on Windows or Terminal on Linux of each member node server, run

the following command to join the node to the same cluster as the leader.

8. In Command Prompt on Windows or Terminal on Linux of all nodes, ensure they are in the

same cluster.

Setup Instructions

1. Sign to MDDC Control Center console with your Administrator account.

2. Navigate to Inventory > Services .

bash

Windows
> rabbitmqctl status

Debian/Ubuntu or Red Hat/Rocky
$ rabbitmqctl status

bash

Windows
> rabbitmqctl stop_app
> rabbitmqctl reset
> rabbitmqctl join_cluster <leader_node_name>
> rabbitmqctl start_app

Debian/Ubuntu or Red Hat/Rocky
$ rabbitmqctl stop_app
$ rabbitmqctl reset
$ rabbitmqctl join_cluster <leader_node_name>
$ rabbitmqctl start_app

bash

Windows
> rabbitmqctl cluster_status

Debian/Ubuntu or Red Hat/Rocky
$ rabbitmqctl cluster_status

112

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#setup-instructions

3. Expand the RabbitMQ group.

4. Click Add service .

5. Enter the values for Name , Host , Port , Username and Password fields of individual

RabbitMQ nodes set up in Build RabbitMQ cluster.

6. Click the Check icon in the bottom right to complete.

7. Ensure all RabbitMQ nodes are reachable by the MDDC Control Center.

113

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-rabbitmq-ha#rabbitmq-cluster

High Availability support for Redis

Redis Sentinel

1. Install Redis instances on servers.

2. Select one instance as primary. In Linux Terminal of the other instances (replicas), run the

following command:

3. Build configuration file for Redis Sentinel.

Info

A minimum of two Redis instances must be installed on separate hosts for High Availability

solution to function properly.

An odd number of Redis Sentinels should be installed.

bash

Debian/Ubuntu or Red Hat/Rocky
$ redis-cli replicaof <primary_host> <primary_port>

bash

114

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha#redis-sentinel

The port on which the Sentinel should run
port <SENTINEL_PORT>

By default Redis does not run as a daemon. Use 'yes' if you
need it.
Note that Redis will write a pid file in /var/run/redis.pid
when daemonized.
daemonize yes

sentinel monitor myprimary <PRIMARY_IP> <PRIMARY_PORT> 2
sentinel monitor <master-name> <ip> <port> <quorum>
quorum is the number of Sentinels that need to agree about
the
fact the master is not reachable, in order to really mark
the master as
failing, and eventually start a failover procedure if
possible.

sentinel down-after-milliseconds myprimary 2000
means sentinel will consider master down after 2 seconds

sentinel failover-timeout myprimary 4000
means the chosen sentinel has 4 seconds to perform failover

sentinel parallel-syncs myprimary 2
sets the number of replicas that can be reconfigured to use
the new master
after a failover at the same time. The lower the number, the
more time it
will take for the failover process to complete, however if
the replicas are
configured to serve old data, you may not want all the
replicas to
re-synchronize with the master at the same time. While the
replication process is
mostly non blocking for a replica, there is a moment when it
stops to
load the bulk data from the master. You may want to make
sure only one
replica at a time is not reachable by setting this option to
the value of 1.

115

4. Install Redis Sentinel instances on servers with the corresponding configuration files.

5. Verify the Redis primary and its replicas. In Linux Terminal of any machine, run the

following command:

Setup instructions

1. Sign to MDDC Control Center console with your Administrator account.

2. Navigate to Inventory > Services .

3. Expand the Redis group.

4. Click Add service .

5. Enter the values for Name , Host , Port , Username and Password fields of individual Redis

instance.

Info

Duplicate the configuration file and modify SENTINEL_PORT to the appropriate port that the

Redis Sentinel instance listens on.

bash

Debian/Ubuntu or Red Hat/Rocky
$ sudo redis-server </path/to/sentinel-config-file> --sentinel

bash

Debian/Ubuntu or Red Hat/Rocky
$ redis-cli -h <sentinel_host> -p <sentinel_port>

Provides information about the Primary
> sentinel master myprimary

Gives you information about the replicas connected to the
Primary
> sentinel replicas myprimary

Provides information on the other Sentinels
> sentinel sentinels myprimary

Provides the IP address of the current Primary
> sentinel get-master-addr-by-name myprimary

116

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-redis-ha#setup-instructions

6. Click the Check icon in the bottom right to complete.

7. Ensure all RabbitMQ nodes are reachable by the MDDC Control Center.

Warning

MDDC Control Center only accepts Redis and not Redis Sentinel.

117

High Availability support for PostgreSQL

Data lake

Installation

High availability solution for PostgreSQL data lake requires a single primary server along with a

minimum of two standby servers. Both PostgreSQL and repmgr must be installed on every server.

1. Select your Linux distribution here and follow the steps to install PostgreSQL accordingly.

2. Follow the steps to install repmgr.

Primary configuration

1. Choose one of the installed servers to be the primary one.

2. Navigate to the folder containing postgresql.conf file and create a replication config file

named postgresql.replication.conf .

Info

repmgr is compatible solely with Linux-based operating systems.

The repmgr version in use must be compatible with the major version of the installed

PostgreSQL.

All PostgreSQL servers must be of the same version and run on the same Operating

System.

Warning

On the servers that target to run as standby:

Do not create a PostgreSQL instance (i.e., do not execute initdb or any database

creation scripts provided by packages).

Ensure the destination data directory exists and is owned by the postgres system

user.

118

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#installation
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.repmgr.org/docs/current/installation-packages.html
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#primary-configuration

Info

By default, postgresql.conf file is placed at

/var/lib/pgsql/<version>/data/ on Red Hat/Rocky.

/var/lib/postgresql/<version>/main on Debian/Ubuntu.

bash

119

Enable replication connections; set this value to at least
one more
than the number of standbys which will connect to this
server
(note that repmgr will execute "pg_basebackup" in WAL
streaming mode,
which requires two free WAL senders).
#
See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-MAX-WAL-SENDERS

max_wal_senders = 10

If using replication slots, set this value to at least one
more
than the number of standbys which will connect to this
server.
Note that repmgr will only make use of replication slots if
"use_replication_slots" is set to "true" in "repmgr.conf".
(If you are not intending to use replication slots, this
value
can be set to "0").
#
See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-MAX-REPLICATION-SLOTS

max_replication_slots = 10

Ensure WAL files contain enough information to enable read-
only queries
on the standby.
#
See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-WAL-LEVEL

wal_level = 'hot_standby'

Enable read-only queries on a standby
#
See: https://www.postgresql.org/docs/current/runtime-config-
replication.html#GUC-HOT-STANDBY

hot_standby = on

Enable WAL file archiving
#
See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-ARCHIVE-MODE

120

3. Add the replication configuration file name to the end of postgresql.conf file and save

the modifications.

4. In Terminal, run the following commands to create repmgr user and database.

5. Edit pg_hba.conf file to configure the authentication.

archive_mode = on

Set archive command to a dummy command; this can later be
changed without
needing to restart the PostgreSQL instance.
#
See: https://www.postgresql.org/docs/current/runtime-config-
wal.html#GUC-ARCHIVE-COMMAND

archive_command = '/bin/true'

This config should be added if you plan to use repmgrd for
automatic failover
See: https://www.repmgr.org/docs/current/repmgrd-basic-
configuration.html
shared_preload_libraries = 'repmgr'

wal_log_hints = on # for pg_rewind when rejoin

bash

...
include 'postgresql.replication.conf'

bash

$ createuser -s repmgr
$ createdb repmgr -O repmgr

Info

In this guideline, although the term repmgr is used for both user and database, any names

can be used.

bash

121

6. Restart PostgreSQL server.

7. Create repmgr.conf file, fill out information in brackets and store it in a location of your

choice.

Ensure the repmgr user has appropriate permissions in
pg_hba.conf
and can connect in replication mode
pg_hba.conf should contain entries similar to the following:
Uncomment this if you want to access Postgresql database via
pgadmin with user "postgres":
#host all postgres 0.0.0.0/0
scram-sha-256

local replication repmgr
trust
host replication repmgr 127.0.0.1/32
trust
#or
host replication repmgr 0.0.0.0/0
trust

local repmgr repmgr
trust
host repmgr repmgr 127.0.0.1/32
trust
#or
host repmgr repmgr 0.0.0.0/0
trust

bash

$ cd /path/to/pg_ctl
$ pg_ctl -D <postgresql_data_dir> restart

Warning

repmgr.conf file should not be placed inside PostgreSQL data folder as it may be

overwritten.

bash

122

8. In Terminal, run the following commands to register the primary server.

Standby configuration

1. Create repmgr.conf file and modify values of node , node_name , conninfo accordingly.

node_id=<any_node_id>
node_name=<any_node_name>
connection info of the current node
conninfo='host=<host_address_of_node> user=repmgr
dbname=repmgr connect_timeout=2'
data_directory='<postgres_data_dir>'
failover='automatic' # for repmgrd (automatic failover)
promote_command='<postgres_dir>/repmgr standby promote -f "
<your_dir>/repmgr.conf" --log-level INFO'
follow_command='<postgres_dir>/repmgr standby follow -f "
<your_dir>/repmgr.conf" -W --log-level INFO'
reconnect_attempts='5'
reconnect_interval='1'
monitor_interval_secs='1'
pg_bindir='<postgres_dir>'
enable this so that repmgr only vote new primary
when none of the standbys can connect to current primary
primary_visibility_consensus=true

Key Red Hat/Rocky Debian/Ubuntu

postgres_data_

dir

/var/lib/pgsql/<version>/d

ata/

/var/lib/postgresql/<version>/

main/

postgres_dir /usr/pgsql-<version>/bin/ /usr/lib/postgresql/<version>/

bin/

your_dir Directory to repmgr.conf file. Directory to repmgr.conf file.

bash

$ cd path/to/repmgr
$ repmgr -f <repmgr_config_file_path> primary register

INFO: connecting to primary database...
NOTICE: attempting to install extension "repmgr"
NOTICE: "repmgr" extension successfully installed
NOTICE: primary node record (id: 1) registered

123

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#standby-configuration

2. Store the file in your reference location.

3. Stop PostgreSQL server.

4. In Terminal, run the following commands to clone data from the primary server.

5. Start PostgreSQL server.

6. In Terminal, run the following commands to register the standby server.

bash

$ cd /path/to/pg_ctl
$ pg_ctl -D <postgresql_data_dir> stop

bash

$ cd path/to/repmgr
$ repmgr -h <primary_server_host> \
 -U repmgr -d repmgr \ # primary repmgr <user> and
<database>
 -f <standby_repmgr_config_file_path> \
 -c \ # fast checkpoint to speed up process
 standby clone \
 --dry-run # dry run to check if the primary can be
cloned

$ repmgr -h <primary_server_host> \
 -U repmgr -d repmgr \ # primary repmgr <user> and
<database>
 -f <standby_repmgr_config_file_path> \
 -c \ # fast checkpoint to speed up process
 standby clone

bash

$ cd /path/to/pg_ctl
$ pg_ctl -D <postgresql_data_dir> start

bash

124

7. Check if the node was registered successfully.

Automatic failover

In Terminal, run the following command to start Replication manager daemon on all PostgreSQL

servers (including primary and standbys)

Rejoin after a failure

1. Do not restart the failed PostgreSQL server, run the following command.

$ cd /path/to/repmgr
$ repmgr -f <standby_repmgr_config_file_path> \
 standby register

bash

$ cd /path/to/repmgr
$ repmgr -f /etc/repmgr.conf cluster show

bash

$ cd /path/to/repmgr
$ repmgrd -f <repmgr_config_file_path>

Info

Replication manager daemon repmgrd does not automatically join a failed PostgreSQL

server node to the cluster. Consequently, the cluster contains at least two primary nodes at

one time, and the system administrator has to join the node to the cluster manually.

bash

$ cd /path/to/repmgr
$ repmgr -f <repmgr_config_file> node rejoin \
 --force-rewind \ # use pg_rewind to help with diverge
timeline
 -d 'host=<current_primary> dbname=repmgr
user=repmgr'

125

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#automatic-failover
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#rejoin-after-a-failure

2. If a node rejoin fails, do register the failed node as a standby. In Terminal, run the following

command.

3. Start PostgreSQL server.

4. Force register the node as a standby.

Setup instructions

1. Sign to MDDC Control Center console with your Administrator account.

2. Navigate to Inventory > Services .

3. Expand the Data Lake group.

4. Click Add service .

5. Enter the values for Name , Host , Port , Username and Password fields of individual

PostgreSQL instance.

6. Click the Check icon in the bottom right to complete.

bash

$ cd /path/to/repmgr
$ repmgr -h <current_primary_server_host> \
 -U repmgr -d repmgr \ # primary repmgr <user> and
<database>
 -f <standby_repmgr_config_file_path> \
 -c \ # fast checkpoint to speed up process
 -F \ # this overwritten the the data folder if it
was created
 standby clone \

bash

$ cd /path/to/pg_ctl
$ pg_ctl -D <postgresql_data_dir> start

bash

$ cd /path/to/repmgr
$ repmgr -f <standby_repmgr_config_file_path> \
 -F \ # forcefully overwrite an existing node record
or user --force
 standby register

126

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-data-lake-ha#setup-instructions

7. Ensure all PostgreSQL instances are reachable by the MDDC Control Center.

127

System settings

This section shows MetaDefender Distributed Cluster settings.

128

Data Retention

You can find this feature under: Settings > Data Retention.

This setting enables users to define the retention period for specific data types, helping optimize

system storage and maintain efficiency.

Available Data Categories

1. Processing History: History of scan results.

2. Executive Report: Statistics data.

3. Audit Log: Detailed logs of user actions and system events.

In case you do not want to enable automatic clean up, set the value to off. This will prevent

automatic removal.

Warning

Disabling automatic clean-up may lead to data accumulation, which can affect system

performance and increase storage costs.

129

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-data-retention#available-data-categories

130

Remote Support Package Gathering

The support package contains log files and is essential for OPSWAT to troubleshoot issues. Since

version 2.2.0, it is now possible to gather a support package remotely via the web console of the

MetaDefender Distributed Cluster Control Center.

Remote support package gathering steps:

1. Go to Settings > Export .

2. Select which MetaDefender Distributed Cluster services need to generate support package,

then select Generate

Info

Ensure that all MDDC services are upgraded to version 2.2.0 or higher to fully support this

feature.

131

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-remote-support-package-gathering#remote-support-package-gathering-steps

3. Wait for the generation process to complete successfully. Once it is done, the download

button will appear, and the support packages will be ready for download.

4. Click Download

Info

Select the MetaDefender Distributed Cluster Worker service to generate a support package for

its deployed instance as well.

Info

The size of the support package may vary depending on log size and the number of days for

collection. If disk space is insufficient, certain log files may be excluded from the support

package.

Warning

All support package files will be downloaded to the MetaDefender Distributed Cluster Control

Center. Please monitor the disk space on the host running this service when using this

functionality, as the size of log files can be very large.

Info

Some services may fail due to connection issues or insufficient disk space. In such cases,

only the successfully generated support packages will be available for download. Users can

view detailed error information if failures occur.

132

133

Security

Setup HTTPS

Transport Layer Security (TLS) is a cryptographic protocol that provides communications security

over a computer network. Websites, like the Web Management Console, are able to use TLS to

secure all communications between their servers and web browsers.

The TLS protocol aims primarily to provide confidentiality (privacy) and data integrity between two

communicating computer applications.

Steps to setup this feature:

1. Go to Inventory> Certificates

2. Click Add certificate

a. To add a certificate using a file path, choose Add by path and enter the location of

both the certificate and its corresponding private key file.

b. To upload certificate file, select Upload file .

Certificate YML sample file:

Info

HTTPS is not enabled by default. As a consequence sessions between the wizard's backend

and the browser may be insecure.

yaml

134

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#setup-https

private_key: |
 -----BEGIN PRIVATE KEY-----

MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQCjYtuWaICCY0
tJ

PubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpoR8Di3DAm
HK

nSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nTekLWcfI5
ZZ

toGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tItnHKT/m6D
SU

0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+m6jzhNyM
BT

J1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8buWQUjy5N8
pS

Np7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefoAzTK4l2p
HN

uC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFIBKIzv9cg
i9

fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqnV0nPN1IM
Sn

zXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtgzoGMTvP/
Au

ehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC9psNcjTM
aB

QLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABAoICAFWe8MQZb37k2gdAV3Y6aq
8f

qokKQqbCNLd3giGFwYkezHXoJfg6Di7oZxNcKyw35LFEghkgtQqErQqo35VPIo
H+

vXUpWOjnCmM4muFA9/cX6mYMc8TmJsg0ewLdBCOZVw+wPABlaqz+0UOiSMMftp
k9

fz9JwGd8ERyBsT+tk3Qi6D0vPZVsC1KqxxL/cwIFd3Hf2ZBtJXe0KBn1pktWht
5A

135

Kqx9mld2Ovl7NjgiC1Fx9r+fZw/iOabFFwQA4dr+R8mEMK/7bd4VXfQ1o/QGGb
MT

G+ulFrsiDyP+rBIAaGC0i7gDjLAIBQeDhP409ZhswIEc/GBtODU372a2CQK/u4
Q/

HBQvuBtKFNkGUooLgCCbFxzgNUGc83GB/6IwbEM7R5uXqsFiE71LpmroDyjKTl
Q8

YZkpIcLNVLw0usoGYHFm2rvCyEVlfsE3Ub8cFyTFk50SeOcF2QL2xzKmmbZEpX
gl

xBHR0hjgon0IKJDGfor4bHO7Nt+1Ece8u2oTEKvpz5aIn44OeC5mApRGy83/0b
vs

esnWjDE/bGpoT8qFuy+0urDEPNId44XcJm1IRIlG56ErxC3l0s11wrIpTmXXck
qw

zFR9s2z7f0zjeyxqZg4NTPI7wkM3M8BXlvp2GTBIeoxrWB4V3YArwu8QF80QBg
Vz

mgHl24nTg00UH1OjZsABAoIBAQDOxftSDbSqGytcWqPYP3SZHAWDA0O4ACEM+e
Cw

au9ASutl0IDlNDMJ8nC2ph25BMe5hHDWp2cGQJog7pZ/3qQogQho2gUniKDifN
77

40QdykllTzTVROqmP8+efreIvqlzHmuqaGfGs5oTkZaWj5su+B+bT+9rIwZcwf
s5

YRINhQRx17qa++xh5mfE25c+M9fiIBTiNSo4lTxWMBShnK8xrGaMEmN7W0qTMb
FH

PgQz5FcxRjCCqwHilwNBeLDTp/ZECEB7y34khVh531mBE2mNzSVIQcGZP1I/Dv
Xj

W7UUNdgFwii/GW+6M0uUDy23UVQpbFzcV8o1C2nZc4Fb4zwBAoIBAQDKSJkFww
uR

naVJS6WxOKjX8MCu9/cKPnwBv2mmI2jgGxHTw5sr3ahmF5eTb8Zo19BowytN+t
r6

2ZFoIBA9Ubc9esEAU8l3fggdfM82cuR9sGcfQVoCh8tMg6BP8IBLOmbSUhN3PG
2m

39I802u0fFNVQCJKhx1m1MFFLOu7lVcDS9JN+oYVPb6MDfBLm5jOiPuYkFZ4gH
79

J7gXI0/YKhaJ7yXthYVkdrSF6Eooer4RZgma62Dd1VNzSq3JBo6rYjF7Lvd+Rw
DC

136

R1thHrmf/IXplxpNVkoMVxtzbrrbgnC25QmvRYc0rlS/kvM4yQhMH3eA7IycDZ
Mp

Y+0xm7I7jTT7AoIBAGKzKIMDXdCxBWKhNYJ8z7hiItNl1IZZMW2TPUiY0rl6ya
Ch

BVXjM9W0r07QPnHZsUiByqb743adkbTUjmxdJzjaVtxN7ZXwZvOVrY7I7fPWYn
CE

fXCr4+IVpZI/ZHZWpGX6CGSgT6EOjCZ5IUufIvEpqVSmtF8MqfXO9o9uIYLokr
WQ

x1dBl5UnuTLDqw8bChq7O5y6yfuWaOWvL7nxI8NvSsfj4y635gIa/0dFeBYZEf
HI

UlGdNVomwXwYEzgE/c19ruIowX7HU/NgxMWTMZhpazlxgesXybel+YNcfDQ4e3
RM

OMz3ZFiaMaJsGGNf4++d9TmMgk4Ns6oDs6Tb9AECggEBAJYzd+SOYo26iBu3nw
3L

65uEeh6xou8pXH0Tu4gQrPQTRZZ/nT3iNgOwqu1gRuxcq7TOjt41UdqIKO8vN7
/A

aJavCpaKoIMowy/aGCbvAvjNPpU3unU8jdl/t08EXs79S5IKPcgAx87sTTi7KD
N5

SYt4tr2uPEe53NTXuSatilG5QCyExIELOuzWAMKzg7CAiIlNS9foWeLyVkBgCQ
6S

me/L8ta+mUDy37K6vC34jh9vK9yrwF6X44ItRoOJafCaVfGI+175q/eWcqTX4q
+I

G4tKls4sL4mgOJLq+ra50aYMxbcuommctPMXU6CrrYyQpPTHMNVDQy2ttFdsq9
iK

TncCggEBAMmt/8yvPflS+xv3kg/ZBvR9JB1In2n3rUCYYD47ReKFqJ03Vmq5C9
nY

56s9w7OUO8perBXlJYmKZQhO4293lvxZD2Iq4NcZbVSCMoHAUzhzY3brdgtSIx
a2

gGveGAezZ38qKIU26dkz7deECY4vrsRkwhpTW0LGVCpjcQoaKvymAoCmAs8V2o
Mr

Ziw1YQ9uOUoWwOqm1wZqmVcOXvPIS2gWAs3fQlWjH9hkcQTMsUaXQDOD0aqkSY
3E

NqOvbCV1/oUpRi3076khCoAXI1bKSn/AvR3KDP14B5toHI/F5OTSEiGhhHesgR

137

rs
 fBrpEY1IATtPq1taBZZogRqI3rOkkPk=
 -----END PRIVATE KEY-----
certificate: |
 -----BEGIN CERTIFICATE-----

MIIF5jCCA86gAwIBAgIJANq50IuwPFKgMA0GCSqGSIb3DQEBCwUAMIGGMQswCQ
YD

VQQGEwJHQjEQMA4GA1UECAwHRXJld2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZD
Eb

MBkGA1UECgwSbGlid2Vic29ja2V0cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3
Qx

HzAdBgkqhkiG9w0BCQEWEG5vbmVAaW52YWxpZC5vcmcwIBcNMTgwMzIwMDQxNj
A3

WhgPMjExODAyMjQwNDE2MDdaMIGGMQswCQYDVQQGEwJHQjEQMA4GA1UECAwHRX
Jl

d2hvbjETMBEGA1UEBwwKQWxsIGFyb3VuZDEbMBkGA1UECgwSbGlid2Vic29ja2
V0

cy10ZXN0MRIwEAYDVQQDDAlsb2NhbGhvc3QxHzAdBgkqhkiG9w0BCQEWEG5vbm
VA

aW52YWxpZC5vcmcwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQCjYt
uW

aICCY0tJPubxpIgIL+WWmz/fmK8IQr11Wtee6/IUyUlo5I602mq1qcLhT/kmpo
R8

Di3DAmHKnSWdPWtn1BtXLErLlUiHgZDrZWInmEBjKM1DZf+CvNGZ+EzPgBv5nT
ek

LWcfI5ZZtoGuIP1Dl/IkNDw8zFz4cpiMe/BFGemyxdHhLrKHSm8Eo+nT734tIt
nH

KT/m6DSU0xlZ13d6ehLRm7/+Nx47M3XMTRH5qKP/7TTE2s0U6+M0tsGI2zpRi+
m6

jzhNyMBTJ1u58qAe3ZW5/+YAiuZYAB6n5bhUp4oFuB5wYbcBywVR8ujInpF8bu
WQ

Ujy5N8pSNp7szdYsnLJpvAd0sibrNPjC0FQCNrpNjgJmIK3+mKk4kXX7ZTwefo
Az

TK4l2pHNuC53QVc/EF++GBLAxmvCDq9ZpMIYi7OmzkkAKKC9Ue6Ef217LFQCFI
BK

138

Izv9cgi9fwPMLhrKleoVRNsecBsCP569WgJXhUnwf2lon4fEZr3+vRuc9shfqn
V0

nPN1IMSnzXCast7I2fiuRXdIz96KjlGQpP4XfNVA+RGL7aMnWOFIaVrKWLzAtg
zo

GMTvP/AuehKXncBJhYtW0ltTioVx+5yTYSAZWl+IssmXjefxJqYi2/7QWmv1QC
9p

sNcjTMaBQLN03T1Qelbs7Y27sxdEnNUth4kI+wIDAQABo1MwUTAdBgNVHQ4EFg
QU

9mYU23tW2zsomkKTAXarjr2vjuswHwYDVR0jBBgwFoAU9mYU23tW2zsomkKTAX
ar

jr2vjuswDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAgEANjIBMr
ow

YNCbhAJdP7dhlhT2RUFRdeRUJD0IxrH/hkvb6myHHnK8nOYezFPjUlmRKUgNED
uA

xbnXZzPdCRNV9V2mShbXvCyiDY7WCQE2Bn44z26O0uWVk+7DNNLH9BnkwUtOnM
9P

wtmD9phWexm4q2GnTsiL6Ul6cy0QlTJWKVLEUQQ6yda582e23J1AXqtqFcpfoE
34

H3afEiGy882b+ZBiwkeV+oq6XVF8sFyr9zYrv9CvWTYlkpTQfLTZSsgPdEHYVc
jv

xQ2D+XyDR0aRLRlvxUa9dHGFHLICG34Juq5Ai6lM1EsoD8HSsJpMcmrH7MWw2c
Kk

ujC3rMdFTtte83wF1uuF4FjUC72+SmcQN7A386BC/nk2TTsJawTDzqwOu/VdZv
2g

1WpTHlumlClZeP+G/jkSyDwqNnTu1aodDmUa4xZodfhP1HWPwUKFcq8oQr148Q
YA

AOlbUOJQU7QwRWd1VbnwhDtQWXC92A2w1n/xkZSR1BM/NUSDhkBSUU1WjMbWg6
Gg

mnIZLRerQCu1Oozr87rOQqQakPkyt8BUSNK3K42j2qcfhAONdRl8Hq8Qs5pupy
+s

8sdCGDlwR3JNCMv6u48OK87F4mcIxhkSefFJUFII25pCGN5WtE4p5l+9cnO1Gr
IX
 e2Hl/7M0c/lbZ4FvXgARlex2rkgS0Ka06HE=
 -----END CERTIFICATE-----

139

3. Go to Settings > Security

4. On the Secure Connection section, click Details

5. Select Enable Certificate , then select your certificate added in step 2.

Password policies

Password Policy settings are accessible under Settings > Security tab.

Local users' password can be enforced to meet requirements set by administrators, which

includes following constraints:

Warning

Applying HTTPS settings may take some time. During this process, the MetaDefender

Distributed Cluster Control Center web console will be temporarily unavailable.

Info

These password policies changes only apply to new user creations and future password

changes. Existing users' passwords are unaffected.

140

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#password-policies

Enforce password policy:

Determines the number of unique new passwords that must be associated with a

user account before an old password can be reused

Range: [0-24]

Default: 0 (to disable enforcement)

Minimum password length:

The least number of characters that can make up a password for a user account

Range: [0-30]

Default: 0 (to disable enforcement)

Password must meet complexity requirements:

Determines whether passwords must meet a series of guidelines that are considered

important for a strong password.

Default: unchecked

Session policies

Administrators can enforce session policies for local users to ensure compliance with

organizational requirements, using the following settings:

Enable idle session timeout:

Idle timeout automatically terminates a user's session based on how long since their

last recorded activity.

Default: 300 seconds.

Enable session timeout

Absolute timeout terminates an individual user's session after a fixed duration,

regardless of any user activity.

Default: 0 (to disable enforcement)

Allow Duplicate Sessions

Permit the same user to log in and operate multiple sessions at once.

Default: Enabled.

141

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-security#session-policies

Allow Cross IP Sessions

Permit requests from sources other than the authenticated origin.

Default: Disabled.

142

File Storage

MetaDefender Distributed Cluster (MDDC) introduces a built-in file storage server known as MDDC

File Storage. The server stores and manages the live time of files and their duplications.

The administrator can set up MDDC to work with a single instance of MDDC File Storage or build a

group of MDDC File Storage instances.

From Inventory > Services of the MDCC Control Center web console, the administrator can

click on the gear icon in the top left corner of the File Storage group to access MDCC File

Storage settings.

143

Multiple instances

When several instances of MDDC File Storage are added to the File Storage group, Min Replica

and Max Replica enable the administrator to configure the operation of the storage group, as

shown in the table below.

144

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#multiple-instances

Data retention

The administrator can configure data retention for files stored in the File Storage group with the

Clean up range option. By default, this option is disabled. The administrator has the option to

retain files for 12 hours, 1 day, 1 week, etc., starting from the present time.

Setting Behavior

Min replica = 1

Max replica = 1

Every file is stored without a backup across all File

Storage servers. File Storage servers in the group

implement a Sharding solution for file storage. Since

there is no backup for any file, if one server in the group

goes down, files managed by that server will be lost to

the clients. This setup provides the best performance

but also poses a high risk of data loss.

Min replica > 1

Max replica > Min replica

Every file is stored on at least Min replica number of

File Storage servers and at most Max-replica number

of servers. The setting provides High Availability

support for File Storage. In most cases, Min replica

and Max replica are configured to 2 and 3, creating a

balance between performance and efficiency in High

Availability.

Min replica > 1

Max replica = Min replica

Every file is fully stored on Max replica number of file

storage servers and will not succeed if it can not be.

This setting is the strictest among three options and

should be considered carefully due to its impact on

system performance.

Warning

Replication of a file across several MDDC File Storage servers significantly impacts the overall

system performance. Hence, the number of replications must be evaluated thoughtfully.

145

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#data-retention

Data protection

By default, all files stored on the MDDC File Storage server are XOR bitwise with a randomly

generated binary string. This option is enabled by default to prevent the file from being executed

successfully due to unexpected factors. The administrator can disable the option to optimize

MDDC File Storage performance, though it may expose the system to security risks.

Info

Files eligible for retention include those produced by CDR, DLP, SBOM, Quarantine engines.

Package (.msi, .deb or .rpm) and module files are marked for cleanup manually and will

never be affected by data retention.

146

https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-config-file-storage#data-protection

147

System Upgrade

A primary focus of MetaDefender Distributed Cluster (MDDC) is to reduce the disruption of file

processing during system upgrades. The levels of impact on file processing during component

updates are outlined as follows:

The potential impacts of each level are detailed below.

MetaDefender Distributed Cluster hosts a vast majority of MetaDefender Core instances. During

the MetaDefender Core upgrade, each instance is upgraded sequentially to prevent interference

with the system's file processing. Intrinsically, the MetaDefender Core upgrade is controlled and

Component

Impact

level Upgrade method

MetaDefender Core 0 Deferral by MDDC Control

Center

MetaDefender Distributed Cluster Worker 1 Manual by Installer file

MetaDefender Distributed Cluster API

Gateway

1 Deferral by MDDC Control

Center

MetaDefender Distributed Cluster Control

Center

1 Manual by Installer file

MetaDefender Distributed Cluster Identity

Service

1 Manual by Installer file

MetaDefender Distributed Cluster File Storage 2 Manual by Installer file

Level Impact

0 The upgrade does not impact file processing.

1 The upgrade does not impact the processing of existing files but may affect the

submission of new files, fetching scan result, downloading processed files,

monitoring or management.

2 The upgrade needs the entire system to go down.

148

https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#deferral-by-metadefender-distributed-cluster-control-center
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#deferral-by-metadefender-distributed-cluster-control-center
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file
https://www.opswat.com/docs/mddistributedcluster/upgrade/mddc-system-upgrade#manual-by-installer-file

managed strictly by MDDC Worker and MDDC Control Center. These services guarantee that the

MetaDefender Core instance is safely isolated from new file submissions and continues

processing until all files are finished on its end before the upgrade procedure takes place.

While not impacting file processing, the upgrade of MDDC Worker may cause a hiccup in

reporting the status and resources consumed by the MetaDefender Core or MDDC API Gateway

instance to MDDC Control Center. Consequently, users may slightly notice that one of their

workers is occasionally missing from their dashboards.

During the MDDC API Gateway upgrade, clients may not be able to submit files, fetch scan

statuses, or download processed files from the service. The deployment of multiple instances of

the MDDC API Gateway should be considered to reduce service interruptions.

MDDC Control Center is designed for system administrators
to manage and monitor operational

services (MetaDefender Core, MDDC API Gateway, etc.), thus its upgrade solely affects the

administrators
and does not file processing.

Although file processing remains uninterrupted, the upgrade of MDDC Identity Service may

affect the authentication of users accessing MDDC Control Center. It may also cause temporary

failures in validating requests that contain API key header in MDDC API Gateway.

Most of services within the system establish connections to MDDC File Storage, thus its upgrade

results in system downtime. Consequently, the upgrade of MDDC File Storage requires the

system administrator to place the entire system in scheduled maintenance mode and this

should be executed during a period when no files are sent for scanning.

Upgrade Methods

Manual by Installer file

1. Download installer package from My OPSWAT.

2. Access the machine that hosts component service pending for upgrade.

3. Start Command Prompt as Administrator on Windows or Terminal as Super user on Linux

and run one of the following commands:

Info

Appliable for MDDC Control Center, Worker, Identity Service and File Storage.

bash

149

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#upgrade-methods
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#manual-by-installer-file
https://my.opswat.com/portal/home/metadefender-core

4. Confirm the service starts successfully.

Deferral by MetaDefender Distributed Cluster Control Center

1. Download installer package from My OPSWAT.

2. Sign in to MDDC Control Center console with your administrator account.

3. Navigate to Inventory > Packages , click Upload packages .

4. Go to Inventory > Worker , click Deploy workers and select Upgrade .

5. Select the correct installer version and click Upgrade .

Windows
> msiexec.exe /i <new_installer> /qn

Debian or Ubuntu
$ sudo dpkg -i <new_installer> || sudo apt install -f

Red Hat or Rocky
$ sudo yum install <new_installer> -y

Info

Appliable for MDDC API Gateway and MetaDefender Core.

150

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#deferral-by-metadefender-distributed-cluster-control-center
https://my.opswat.com/portal/home/metadefender-core

6. Wait until the upgrade finishes and verify that the components have been upgraded to the

correct versions.

7. Verify system health and status.

Upgrade procedures

Follow the steps to upgrade to MetaDefender Distributed Cluster v2.4.0

Info

During the upgrade process, modifications to the settings outlined below are prohibited:

Workflow

Module Update

Health check

151

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/upgrade?mode=print&deployment_id=latest#upgrade-procedures
https://www.opswat.com/-

152

Performance and Load Estimation

Factors that affect performance

MetaDefender Core version

MetaDefender Core engine package and configuration

set of engines (which and how many)

product configuration (e.g., thread pool size)

MetaDefender Distributed Cluster API Gateway version

System environment

server profile (CPU, RAM, hard disk)

client application location - remote or local

system caching and engine level caching

Dataset

encrypted or decrypted

file types

different file types (e.g., document, image, executable)

archive file or compound document format files

file size

bad or unknown (assume to be clean)

Performance tool

Performance metrics

While processing files on the system, service performance is measured by various metrics. Some

of them are commonly used to define performance levels, including:

Disclaimer

These results should be viewed as guidelines and not performance guarantees, since there

are many variables that affect performance (file set, network configurations, hardware

characteristics, etc.). If throughput is important to your implementation, OPSWAT

recommends site-specific benchmarking before implementing a production solution.

153

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#factors-that-affect-performance
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#performance-metrics

Performance metrics Description

Number of processed objects per hour

vs. Number of processed files per hour

On MetaDefender Core, meaning of “files” and

“objects” are not the same.

“files”: exclusively refers to original files

submitted to MetaDefender Core. These

could be either archive or non-archive file

formats. For archives, depending on

archive handling settings, MetaDefender

Core may need to extract them and

process all nested files inside as well. For

example, one archive file could contain

millions of nested files inside.

“objects”: refers to any individual files

that MetaDefender Core must process.

These could be separate original files

submitted to MetaDefender Core, or

extracted files coming from an archive.

The number of processed objects is

considered to be a more accurate

throughput metric to measure

MetaDefender Core performance.

The primary metric used to measure average vs

peak throughput of a MetaDefender Core system

is “processed objects per hour.”

Submission load

(number of successful requests per

second)

This performance metric measures the load

generated by a test client application that

simulates loads submitted to MetaDefender

Core.

A submission is considered successful when

the client app submits a file to MetaDefender

Core and receives a dataID, which indicates that

the file has successfully been added to the

Queue.

Submission load should measure both average

and peak loads.

Average processing time per object The primary metric used to measure processing

time of a MetaDefender Core system is “avg

processing time (seconds/object).”

154

How test results are calculated

Performance (mainly scanning speed) is measured by throughput rather than unit speed. For

example, if it takes 10 seconds to process 1 object, and it also takes 10 seconds to process 10

objects, then performance is quantified as 1 second per object, rather than 10 seconds.

total time / total number of objects processed: 10 seconds / 10 objects = 1 second / object.

Dataset

Environment

Topology

Performance metrics Description

Total processing time

(against certain data set)

Total processing time is a typical performance

metric to measure the time it takes to complete

the processing of a whole dataset.

File category

File

type Number of files Total size Average file size

Document DOC 3,820 534 MB 0.14 MB

Medium archive

files

RPM

CAB

EXE

50 Compressed size:

2.8 GB
Extracted

size: 12.09 GB

Compressed size:

56.02 MB
Extracted

size: 0.036 MB

Big archive files CAB 4 Compressed size:

2.9 GB
Extracted

size: 124 GB

Compressed size: 715

MB

155

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#how-test-results-are-calculated
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#dataset
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#environment
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#topology

Using AWS environment with the specification below:

MDDC system

156

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#mddc-system

Client tool

MD Core

File

Storage

API

Gateway PostgreSQL RabbitMQ Redis

OS Windows

Server

2022

Rocky

Linux 9

Rocky

Linux 9

Rocky Linux

9

Rocky

Linux 9

Rocky

Linux 9

AWS

instance

type

c5.2xlarge c5n.4xlarge c5n.2xlarge c5.xlarge c5.xlarge c5.xlar

vCPU 8 16 4 4 4 4

Memory 16GB 32GB 8GB 8GB 8GB 32GB

Disk Type

IOPS

Throughput

Size

gp3

3000

125MB/s

100GB

gp3

12000

1000MB/s

150GB

gp3

3000

256MB/s

100GB

gp3

10000

550MB/s

100GB

gp3

3000

125MB/s

80GB

gp3

3000

125MB/

80GB

Network

bandwidth

(baseline &

burst)

2.5 Gbps

10 Gbps

15 Gbps

25 Gbps

5 Gbps

25 Gbps

1.25 Gbps

10 Gbps

1.25 Gbps

10 Gbps

1.25

Gbps

10 Gbp

Benchmark

(Geekbench)

EC2

c5.2xlarge

EC2

c5n.4xlarge

EC2

c5n.2xlarge

EC2

c5.xlarge

EC2

c5.xlarge

EC2

c5.xlar

157

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#client-tool
https://browser.geekbench.com/v6/cpu/11135302
https://browser.geekbench.com/v6/cpu/8698288
https://browser.geekbench.com/v6/cpu/6403463
https://browser.geekbench.com/v6/cpu/11610851
https://browser.geekbench.com/v6/cpu/11610851
https://browser.geekbench.com/v6/cpu/11610851

Product information

MetaDefender Core v5.14.2

Engines:

Metascan 8: Ahnlab, Avira, ClamAV, ESET, Bitdefender, K7, Quick Heal, VirIT Explorer

Archive v7.4.0

File type analysis v7.4.0

MDDC Control Center v2.0.0

MDDC API Gateway v2.0.0

MDDC File Storage v2.0.0

PostgreSQL v14.17

RabbitMQ v3.12.6

Redis v7.2.1

MetaDefender Core settings

General settings

Turn off data retention

Turn off engine update

Scan queue: 1000 (for Load Balancer deployment)

Detail

OS Rocky Linux 9

AWS instance type c5n.xlarge

vCPU 4

Memory 10GB

Disk Type: gp3

IOPS: 3000

Throughput: 125MB/s

Size: 80GB

Network bandwidth Baseline: 5 Gbps

Burst: 10 Gbps

158

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#product-information
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#metadefender-core-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#general-settings

Archive Extraction settings

Max recursion level: 99999999

Max number of extracted files: 99999999

Max total size of extracted files: 99999999

Timeout: 10 minutes

Handle archive extraction task as Failed: true

Extracted partially: true

Metascan settings

Max file size: 99999999

Scan timeout: 10 minutes

Per engine scan timeout: 1 minutes

Advanced settings

RabbitMQ

RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS=-rabbit consumer_timeout unlimited

default_consumer_prefetch {false,525}

Redis

redis-cli flushall

redis-cli config set save ''

redis-cli config set maxmemory 25gb

redis-cli config set maxmemory-policy volatile-ttl

Performance results

Load-balance deployment vs MDDC deployment

Multiple tests are conducted using 12 MetaDefender Core instances across two deployment types,

MetaDefender Distributed Cluster (MDDC) and Load Balancer, to determine the superiority of the

MDDC in 4 different datasets.

159

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#archive-extraction-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#metascan-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#advanced-settings
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#rabbitmq
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#redis
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#performance-results
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#load-balance-deployment-vs-mddc-deployment

Scenario Result

Aggressively submitted 2M non-archive files

at a rate of 800 files per second.

160

Scenario Result

Submitted 400 medium archive files at a rate

of 1 files per second.

161

Scenario Result

Submitted a mix of 189K non-archive and

medium archive files at a rate of 180 files per

second.

162

Scaling out

In the following test scenarios, we conducted experiments on four datasets using 4 and 12 of MD

Core instances in MetaDefender Distributed Cluster (MDDC), demonstrating the benefits of

increased instance counts.

Scenario Result

Submitted 4 large CAB files.

The scenarios replicate 2 different routing

cases of a common Load Balancer.

LB OneToOne: An ideal routing ensures that

one CAB file is routed to a single MD Core.

LB FourToOne: The worst routing that

delivered four CAB files to a single MD Core.

#

Archive distribution

In workflow, setting "Load shared among

MetaDefender Core instances for archive

processing" is enabled.

163

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/performance?mode=print&deployment_id=latest#scaling-out

Scenario Result

Aggressively submitted 2M non-archive files at a

rate of 800 files per second.

Submitted 400 medium archive files at a rate of 1

files per second.

164

Scenario Result

Submitted a mix of 189K non-archive and

medium archive files at a rate of 60 files per

second.

Submitted 4 large CAB files.

Archive distribution

In workflow, setting "Load shared among

MetaDefender Core instances for archive

processing" is enabled.

165

166

Log Gathering in MetaDefender

Distributed Cluster

Download support packages

From the web console of MetaDefender Distributed Cluster (MDDC), the administrator can easily

download the support packages of the following services:

MDDC Control Center

MDDC Identity Service

MDDC File Storage

MDDC Worker including MDDC API Gateway or MetaDefender Core deployed by the worker.

Please refer to Remote Support Package Gathering for more information.

Collect service logs

Logs from the services Redis, RabbitMQ, and PostgreSQL need to be collected manually.

Redis - Caching Server

1. Run Terminal as root privilege (sudo).

2. Open Redis config file /etc/redis/redis.conf in edit mode e.g.:

3. Find and replace logfile directive with your desired location.

Info

Redis caching server is officially supported on Linux.

bash

$ vi /etc/redis/redis.conf

bash

167

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#download-support-packages
https://www.opswat.com/docs/mddistributedcluster/configurations/mddc-remote-support-package-gathering
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#collect-service-logs
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#redis---caching-server

4. Save the file, and restart Redis daemon.

5. Find and collect Redis log <path/to/your/redis/log>.log

RabbitMQ - Message Broker Server

Windows

1. Locate and collect RabbitMQ log files that match the pattern

%APPDATA%\RabbitMQ\log\rabbit@<computer name>.log .

2. Locate and collect RabbitMQ upgrade log files that match the pattern

%APPDATA%\RabbitMQ\log\rabbit@<computer name>_upgrade.log .

Linux

1. Run terminal as root privilege (sudo).

2. Run following command to retrieve RabbitMQ log location:

3. Access RabbitMQ log folder and find log files:

rabbit@<computer name>.log

rabbit@<computer name>_upgrade.log

PostgreSQL - Database Server

Windows

1. Locate and collect log files that match the pattern C:\Program

Files\PostgreSQL\12\data\log with names postgresql-<yyyy-mm-dd>_<HHMMSS>.log

Linux

1. Run terminal as root privilege (sudo).

2. Open the PostgreSQL config file /etc/postgresql/12/main/postgresql.conf in edit

mode e.g.:

logfile "<path/to/your/redis/log>.log"

bash

$ sudo systemctl restart redis

bash

$ rabbitmq-diagnostics -q log_location

168

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#rabbitmq---message-broker-server
https://www.opswat.com/docs/mddistributedcluster/v2.4.0/trouble-shooting?mode=print&deployment_id=latest#postgresql---database-server

3. Find and turn logging_collector directive on :

4. Save the file and restart PostgreSQL daemon, e.g.:

5. Locate and collect log files that match the pattern

/var/lib/postgresql/12/main/log/postgresql-<yyyy-mm-dd>_<HHMMSS>.log .

bash

$ vi /etc/postgresql/12/main/postgresql.conf

bash

logging_collector = on

bash

$ sudo systemctl restart postgresql

169

Release notes

New Features, Improvements and Enhancements

Export scan result in JSON format

From MetaDefender Distributed Cluster (MDDC) Control Center, users can export scan result in

JSON format.

Export processing history in STIX or CSV format

Processing history can be exported in STIX or CSV format from MDDC Control Center.

Remove abandoned module packages

Abandoned module packages can be selected and removed on web console of Control Center.

Version 2.4.0

Release date 30 September 2025

Scope Support /readyz API endpoint, export scan result in JSON format,

export processing history in STIX or CSV format, support grouping and

removing abandoned engine packages, fix eventual crashes of

services

170

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/release-notes?mode=print&deployment_id=latest#new-features-improvements-and-enhancements

Customize the system health check

System administrators can enable the health check option and set the minimum number of

required MetaDefender Core instances in the Health Check settings of the MDDC Control Center.

RESTful API

Introduce a new API endpoint in MetaDefender Distributed Cluster API Gateway to verity if

the system is ready for new scan requests GET /readyz .

Introduce a new field, dlp_wait_time , in the response of GET /file/{data_id} API

requested from MetaDefender Distributed Cluster API Gateway.

Include username field in the response of GET /file/{data_id} , GET

/file/batch/{batch_id} and GET /hash/{md5|sha1|sha256|sha512} .

Further Enhancements

Verify the minimum version requirement when adding a new instance of Redis, RabbitMQ,

and PostgreSQL to MetaDefender Distributed Cluster Control Center.

Improve storing scan results from AV engines to MetaDefender Distributed Cluster Data

Lake.

171

Security Enhancements

Upgraded library for vulnerability fixes:

OpenSSL 3.5.2

Bug Fixes

Fixed the issue that caused occasional service crashes when halted.

Fixed the issue that made it impossible to close a batch if its name contained special

characters.

Fixed the issue that led to the batch name not appearing in the UI of MDDC Control Center.

Fixed the issue that caused the COO engine to fail or time out during installation.

Fixed the issue that caused the executive report to eventually miss data.

Known Limitations

Details

MetaDefender Core

becomes unlicensed

following the MDDC

Worker upgrade

This issue will be resolved in MDDC version 2.5.0.

In version 2.4.0, MetaDefender Core instance that has already

deployed and activated successfully with a valid license

becomes unlicensed after its MDDC Worker is upgraded.

Workaround:

To online activation: follow steps to activate a

MetaDefender Core instance after deployment.

To offline activation: follow steps to activate a

MetaDefender Core instance with with license file.

172

https://www.opswat.com/docs/mddistributedcluster/v2.4.0/release-notes?mode=print&deployment_id=latest#known-limitations
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-online-activation#license-activation
https://www.opswat.com/docs/mddistributedcluster/installation/mddc-offline-activation#activate-metadefender-core-instances-with-license-files

API Reference

API Gateway
API Version: v2.4.0

 Developer Guide

This is the API documentation for MetaDefender Distributed Cluster API Gateway Public API. If
you would like to evaluate or have any questions about this documentation, please contact us
via our Contact Us form.

 How to Interact with MetaDefender Distributed
Cluster API Gateway using REST API
MetaDefender Distributed Cluster API Gateway is used to submit files for analysis, retrieve
scan results, manage file processing, download processed files, and manage file batches.
OPSWAT recommends using the JSON-based REST API. The available methods are
documented below.

173

https://www.opswat.com/contact
https://www.opswat.com/contact

Note: MetaDefender Distributed Cluster API doesn't support chunk upload, however is
recommended to stream the files to MetaDefender Distributed Cluster API Gateway as part of
the upload process.

 File Analysis Process
 MetaDefender Distributed Cluster is a system with multiple components that work together to

utilize the power of multiple MetaDefender Core instances. The system is designed to handle
large volumes of files and provide high throughput for file analysis. The system can be
deployed in a distributed manner, allowing for horizontal scaling and load balancing across
multiple MetaDefender Core instances.

 Below is a brief description of the API integration flow:

Upload a file for analysis to MetaDefender Distributed Cluster API Gateway (POST /file), 1.
which returns the data_id: File Analysis.

The following method can be used to retrieve the analysis report: 2.

Polling: Fetch the result with previously received data_id (GET /file/{data_id} resource)
until scan result belonging to data_id doesn't reach the 100 percent
progress_percentage: (Fetch analysis result)

Note: Too many data_id requests can reduce performance. It is enough to just check every
few hundred milliseconds.

Retrieve the analysis results anytime after the analysis is completed with hash for files 3.

174

/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysispost
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysispost
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget
/docs/mdcore/metadefender-distributed-cluster/ref#fileanalysisget

(md5, sha1, sha256, sha512) by calling Fetch analysis result by hash.

The hash can be found in the scan results

Retrieve processed file (sanitized, redacted, watermarked, etc.) after the analysis is 4.
complete.

Note: Based on the configured retention policy, the files might be available for retrieval at a
later time.

OPSWAT provides some sample codes on GitHub to make it easier to understand how the
MetaDefender REST API works.

CONTACT

NAME: API Support
EMAIL: feedback@opswat.com
URL: https://github.com/OPSWAT/metadefender-core-openapi3
Terms of service: https://onlinehelp.opswat.com/policies/

175

/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
/docs/mdcore/metadefender-distributed-cluster/ref#hashget
https://github.com/OPSWAT
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/

Security and Authentication
SECURITY SCHEMES

KEY TYPE DESCRIPTION

apikey apiKey Generated `session_id` from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an `apikey` for API
calls that require authentication.

176

API
1. ANALYSIS

 File analysis APIs
Submit each file to MetaDefender Distributed Cluster API Gateway individually or group them
in batches. Each file submission will return a data_id which will be the unique identifier used
to retrieve the analysis results.

Note: MetaDefender API doesn't support chunk upload. You shouldn't load the file in memory,
is recommended to stream the files to MetaDefender Distributed Cluster API Gateway as part
of the upload process.

1.1 POST /file

Analyze File (Asynchronous mode)

Scanning a file using a specified workflow. Scan is done asynchronously and each scan
request is tracked by data id of which result can be retrieved by API Fetch Scan Result.

Note: Chunked transfer encoding (applying header Transfer-Encoding: Chunked) is not
supported on /file API.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

177

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an `apikey` for API
calls that require authentication.

filename string The name of the submitted file
user_agent string user_agent header used to identify (and limit) access to a particular rule.

For rule selection, `rule` header should be used.
rule string Select rule for the analysis, if no header given the default rule will be

selected (URL encoded UTF-8 string of rule name)
batch string Batch id to scan with, coming from `Initiate Batch` (If it is not given, it will

be a single file scan.)
archivepwd string Password for archive (URL encoded UTF-8 string)

Multiple passwords is also supported, format: archivepwdX
 * X: Could be empty
 * When having value, X must be a number >= 1

For example:
 * archivepwd1: "fox"
 * archivepwd2: "cow"
 * archivepwd3: "bear"

content-
encoding

string Content encoding of the file. This header is used to specify the encoding
of the file content.
The value should be a valid content encoding type, such as "base64",
"gzip".
This header is optional and can be omitted if the encoding is not
applicable.

metadata json Could be utilized for:

* Additional parameter for pre-defined post actions and external scanners
(as a part of STDIN input).

* Customized macro variable for watermarking text (Proactive DLP engine
feature).

* Additional context / verbose information for each file submission
(appended into JSON response scan result).

It is strongly recommended to apply URL encoding before sending
`metadata` to Metadefender Core to prevent unexpected issues related to
encoding errors or unsafe characters.

178

NAME TYPE EXAMPLE DESCRIPTION

engines-
metadata

json Since MetaDefender Core 5.0.0, preferred context / verbose information
can be sent to the engines.

Please see the below pages for the details:
 * [File Type engine](https://docs.opswat.com/mdcore/utilities-engines/

supported-engines-metadata) (supported since Core 5.2.1)
 * [Archive engine](https://docs.opswat.com/mdcore/utilities-engines/

supported-engines-metadata-header) (supported since Core 5.4.1)
 * [Deep CDR](https://docs.opswat.com/mdcore/deep-cdr/supported-

engines-metadata-json)
 * [Proactive DLP](https://docs.opswat.com/mdcore/proactive-dlp/

supported-engines-metadata-json)
global-
timeout

integer This custom global timeout (in seconds) will override the global timeout
predefined in corresponding workflow rule.

RESPONSE

STATUS CODE - 200: Successful file submission

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

data_id* string Unique submission identifier.
Use this value to reference the submission.

EXAMPLE:

{
 "data_id": "61dffeaa728844adbf49eb090e4ece0e"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 411: Content-Length header is missing from the request.

179

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

EXAMPLE:

{
 "err": "Missing Content-Length header."
}

STATUS CODE - 422: Body input is empty.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

EXAMPLE:

{
 "err": "File is empty."
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

STATUS CODE - 503: Server is too busy. Try again later.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

EXAMPLE:

{
 "err": "Server is too busy. Try again later."
}

180

1.2 GET /file/{data_id}

Fetch Analysis Result

Retrieve scan results.

Scan is done asynchronously and each scan request is tracked by a data ID.

Initiating file scans and retrieving the results need to be done using two separate API calls.
This request needs to be made multiple times until the scan is complete. Scan completion
can be traced using scan_results.progress_percentage value from the response.

Note: The REST API also supports pagination for archive file result. A completed response
description with archive detection:

extracted_files: information about extracted files

files_extracted_count: the number of extracted files
files_in_archive: array of files in archive

detected_by: number of engines reported threat
scanned_with: number of engines used for scanning the file

first_index: it tells that from which file (index of the file, 0 is the first) the result JSON
contains information about extracted files. (default=0)
page_size: it tells how many files the result JSON contains information about
(default=50). So by default, the result JSON contains information about the first 50
extracted files.
worst_data_id: data id of the file that has the worst result in the archive

scan_results

last_file_scanned (stored only in memory, not in database): If available, the name of the
most recent processed file

181

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*data_id string Unique submission identifier.
Use this value to reference the submission.

QUERY PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

first integer The first item order in the list child files of archive file
size integer The number of items to be fetched next, counting from the item order indicated in

first header

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

user_agent string user_agent header used to identify (and limit) access to a particular rule. For
rule selection, `rule` header should be used.

RESPONSE

STATUS CODE - 200: Entire analysis report generated by MetaDefender Core

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

data_id string data identifier of the requested file

dlp_info object

certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
Describes how certain the hit is, possible values:

 * `Very Low`
 * `Low`
 * `Medium`
 * `High`
 * `Very High`

errors object

filename string Output processed file name (pre-configured on engine settings under Core's
worflow rule)

182

NAME TYPE DESCRIPTION

hits object

ccn object

display_name string Credit Card Number, Social Security Number, or in case of RegEx, the name of
the rule that has been given by the user

hits array

after string The context after the matched data.

before string The context before the matched data.

certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
The text version of "certainty_score", possible values:

 * `Very Low`
 * `Low`
 * `Medium`
 * `High`
 * `Very High`

certainty_score integer Is defined by the relevance of the given hit in its context. It is calculated
based on multiple factors such as the number of digits, possible values:
[0-100]

hit string The matched data.

location string The location of the hit that is found in a file.

severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): can be 0 (detected) or 1 (suspicious).

tryRedact boolean If file was redacted or not.

metadata_removal object

result enum ALLOWED: removed, not removed, failed to remove
Result of the metadata removal process, possible values:

 * `removed`
 * `not removed`
 * `failed to remove`

redact object

result enum ALLOWED: redacted, not redacted, failed to redact
Result of the redaction process, possible values:

 * `redacted`
 * `not redacted`
 * `failed to redact`

severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): represents the severity of the data loss,
possible values:

 * `0` - Certainly is data loss
 * `1` - Might be data loss

verdict enum ALLOWED: 0, 1, 2, 3, 4
The overall result for the scanned file. Possible values:

 * `0` - Clean
 * `1` - Found matched data
 * `2` - Suspicious
 * `3` - Failed
 * `4` - Not scanned

183

NAME TYPE DESCRIPTION

watermark object

result enum ALLOWED: added, not added, failed to add
Result of the watermarking process, possible values:

 * `added`
 * `not added`
 * `failed to add`

download_info object

error_detail string Revealed detailed reason why the download failed.

progress number Only applicable when "status" is `Downloading`, indicates download finished
percentage, in a range of [1, 99].

 * Once hitting 100, the status will be changed to `Download Success`.
 * or other problematic status (`Download Cancelled`, `Download Failed`) if the
download stopped unexpectedly.

184

NAME TYPE DESCRIPTION

status string Indicates download status, which could be either
 - `Downloading`

 - Check `progress` key value for actual download percentage
      ```json
      "download_info": {

          "progress": 7,
          "status": "Downloading",
          "url": "http://192.168.200.97:8080/5gb.zip"

      }
      ```

 - `Download Success`
      ```json
      "download_info": {

          "status": "Download Success",
          "url": "https://secure.eicar.org/eicar.com"

      }
      ```

 - `Download Failed`
 - Check `error_detail` key value for an error explanation

      ```json
      "download_info": {

          "error_detail": "Connection error",
          "status": "Download Failed",
          "url": "http://192.168.200.97:8080/2gb.zip"

      }
      ```

 - `Download Timeout`
 - Expecting to occur when the download progress takes longer than what time

window allowed in MetaDefender Core's pre-configured setting under
workflow rule (under "SCAN" tab)

      ```json
      "download_info": {

          "status": "Download Timeout",
          "url": "http://192.168.200.97:8080/2gb.zip"

      }
      ```

 - `Download Cancelled`
 - Expecting to occur when user explicitly cancelled that file scan request, or

batch request that the scan belongs to
      ```json
      "download_info": {

          "status": "Download Cancelled",
          "url": "http://192.168.200.97:8080/5gb.zip"

      }
      ```

url string Original download link which was specified in HTTP(S) request's
`downloadfrom` header

extraction_info object

decrypted_status enum ALLOWED: Success, Failed
Indicate that decryption phase is successful or not.

err_category string Error category

err_code integer Error code

err_details string Error message

is_encrypted_file boolean Indicate if file is password-protected or not.

185

NAME TYPE DESCRIPTION

file_info object

display_name string The filename reported via `filename` header.

file_size integer Total file size in bytes.

file_type string The filetype using mimetype.

file_type_description string The filetype in human readable format.

md5 string File's MD5 hash.

sha1 string File's SHA1 hash.

sha256 string File's SHA256 Hash.

sha512 string File's SHA512 Hash.

signer_infos array

digest_algorithm string Digest algorithm.

digest_encryption_algorithm string Encryption algorithm.

issuer string Entity that develops and registers the certificate.

serial_number string Serial number of the certificate.

vendor_name string Entity that is issued a certificate and utilize it for creating a digital signature.

version string Version of X.509 that is used in the certificate. This version field is zero-
based.

* 0: v1
* 1: v2
* 2: v3

type_category array

receive_data_timestamp string The timestamp when upload progress started (first byte received) (in
milliseconds)

upload_time integer Total time elapsed for upload process (in milliseconds).

upload_timestamp string The timestamp when upload progress finished (all bytes received) (in
milliseconds)

filetype_info object

file_info* object

description* string File type description

detected_by string Analyzer that detected the file type

encrypted* boolean File is password-protected or not

extensions* string File type extension

groupID* string File type category

groupIDs* array

group_description string File type category description

likely_type_ids array

186

NAME TYPE DESCRIPTION

score* integer Likelihood score of the file type

typeID* string File type ID

type* string MIME type

typeID* string File type ID

type_ids* array

final_verdict object

verdict* enum ALLOWED: allowed, blocked
Final verdict of the file type analysis.

verdict_explanation* string Explanation of the final verdict.

is_file_type_mismatch boolean Indicates if the file type does not match the expected type.

other_detections array Other file type detections.

result_template_hash string SHA256 Hash of user-interface template. For web console only.

spoofing_info object

detection_result string Result of the spoofing detection.

result_explanation string Explanation of the spoofing detection result.

result_overview string Overview of the spoofing detection result.

opswatfilescan_info object

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

blocked_reasons array

file_type_skipped_scan boolean Indicates if the input file's detected type was configured to skip scanning.

hash_time integer Total time elapsed for computing hashes (in milliseconds).

outdated_data array

processing_time integer Total time elapsed during processing file (in milliseconds).

processing_time_details object

av_scan_time integer AV engines' processing time.

cdr_time integer Deep CDR engine's sanitization time.

dlp_time integer Proactive DLP engine's processing time.

extraction_time integer Archive extraction engine's processing time.

filetype_time integer FileType engine's processing time.

opswatfilescan_time integer OPSWAT Filescan engine's processing time.

others_time integer Total time elapsed for following processing tasks in the product (in
milliseconds):
* Decryption time (if receiving an encrypted file)
* External scanner (if configured)
* Post action (if configured)
* Other internal processing time among components in the product

187

NAME TYPE DESCRIPTION

parse_dgsg_time integer Digital signature analyzing time.

vul_time integer Vulnerability engine's lookup time.

yara_time integer YARA engine's processing time.

filetype_wait_time integer FileType engine's wait time.

profile string The used rule name.

progress_percentage integer Percentage of processing completed (from 1-100).

queue_time integer Total time elapsed for file processing task was waiting in MetaDefender
Core’s queue until being picked up (queue_time = start_time -
upload_timestamp) (in milliseconds).

result string The final result of processing the file (Allowed / Blocked / Processing).

user_agent string Identifier for the REST Client that calls the API.

username string User identifier who submitted scan request earlier.

verdicts array

post_processing object

actions_failed string Empty string if no action failed or list of failed actions, separated by "|".

actions_ran string List of successful actions, separated by "|". Empty string if otherwise.

converted_destination string Contains the name of the sanitized file.

converted_to string Contains target type name of sanitization.

copy_move_destination string Contains target type name of sanitization.

sanitization_details object

cdr_wait_time integer The time in milliseconds that the CDR process took to complete.

description string Action was successful or not.

details array

action* enum ALLOWED: sanitized, removed
The type of action that was performed

count integer The number of objects that were sanitized/removed.

details object

action enum ALLOWED: sanitized, removed
The type of action that was performed

count integer The number of objects that were sanitized/removed.

object_details array

object_name string The object type that was sanitized/removed.

description string Action was successful or not.

file_name string If an embedded file was sanitized.

object_details array

object_name* string The object type that was sanitized/removed.

188

NAME TYPE DESCRIPTION

failure_category string Deep CDR errors are classified into different categories.

For more details, please find [Troubleshooting sanitization failures](https://
docs.opswat.com/mdcore/deep-cdr/troubleshooting-sanitization-failures)

result enum ALLOWED: Sanitized, Sanitized failed, Sanitized skipped
The result of the CDR process.
- **Sanitized**: the file was successfully sanitized.
- **Sanitized failed**: the file could not be sanitized due to an error during the
process.
- **Sanitized skipped**: the file was skipped from sanitization. Common
reasons include the file being digitally signed or other policy-based
exclusions.

result_template_hash string The hash value of the result template, which is used for displaying results on
the Core UI and for internal communication between MetaDefender Core and
the Deep CDR engine.
This value is intended for system use only and is not required for external
integration.

sanitized_file_info object

file_size integer Size of sanitized file in bytes.

sha256 string SHA256 hash of sanitized file.

verdict enum ALLOWED: blocked, allowed
The verdict of the CDR process.
- **blocked**: the file is recommended for blocking by Deep CDR.
- **allowed**: the file is recommended for allowing by Deep CDR as it found
no reason to recommend blocking it.

verdict_explanations array

scan_results object

data_id string Data ID of the requested file

progress_percentage integer Track analysis progress until reaches 100.

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not
Scanned, Encrypted Archive, Exceeded Archive Size,
Exceeded Archive File Number, Password Protected
Document, Exceeded Archive Timeout, Mismatch, Potentially
Vulnerable File, Cancelled, Sensitive Data Found, Yara
Rule Matched, Potentially Unwanted, Unsupported File
Type, Extraction Failed, Scan Failed, Suspicious Verdict
by Sandbox, Likely Malicious Verdict by Sandbox,
Malicious Verdict by Sandbox, Blocked Verdict by Sandbox,
Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by
SBOM, Blocked Verdict by SBOM, Blocked by Post Action,
Known Bad, Known Good, Unknown, Allowed Verdict by COO,
Blocked Verdict by COO, Unknown Verdict by COO, In
Progress, Skip Processing Fast Symlink
The overall scan result as string

189

NAME TYPE DESCRIPTION

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

start_time string Timestamp when the scanning process starts.

total_avs integer Total number of scanning engines used as part of this analysis.

total_time integer Total time elapsed during scan (in milliseconds).

scan_details object

ClamAV object

def_time string The database definition time for this engine

eng_id string The unique identification string for the engine

location string Where this engine is deployed (local/remote).

scan_result_i integer Scan result as index in the Processing Results table

scan_time integer The time elapsed during scan with this engine (in milliseconds).

threat_found string The threat name, IF scan result is Infected or Suspicious. Otherwise empty
string or error message from the engine.

wait_time integer Time elapsed between sending file to Core and receiving the result from the
engine (in milliseconds).

vulnerability_info object

result object

code integer The result code for vulnerability check, 0 means a successful check

hash string The file's SHA1 hash value

method enum ALLOWED: 50700
The method used by OESIS Framework, it should be 50700 every time.

timestamp string Timestamp of the request issued

timing integer The vulnerability check's duration in milliseconds

detected_product object

has_kb boolean Indicates whether any KBs or MSBs exist for this hash

has_vulnerability boolean Indicates whether any vulnerabilities have been associated with the particular
product

is_current boolean True if this product's patch level is current, defaults to true

product object

id integer The OPSWAT product id

name string The product name

remediation_link string A link where product updates or patches can be obtained

190

NAME TYPE DESCRIPTION

severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:

 * `LOW`
 * `MODERATE`
 * `IMPORTANT`
 * `CRITICAL`
 * `NOT_AVAILABLE`
 * `UNKNOWN`

sig_name string Product signature descriptor

signature integer OPSWAT signature id

vendor object

id integer The OPSWAT vendor id

name string The vendor name

version string The installed product version

version_data object

count_behind integer The number of patches behind of the installed product

feed_id integer The remote feed ID used to determine patch level

version string The current version of the product in the remote feed

vulnerabilites array

description string A text description of the specific vulnerability

details object

cpe string A CPE product reference

cve string A CVE identification string

cvss object

access-complexity string A CVSS access-complexity descriptor

access-vector string A CVSS access-vector descriptor

authentication string A CVSS authentication descriptor

availability-impact string A CVSS availability impact descriptor

confidentiality-
impact

string A CVSS confidentiality impact descriptor

generated-on-
epoch

string An epoch timestamp indicating CVSS generation time

integrity-impact string A CVSS integrity impact descriptor

score string A CVSS 10-point severity score

source string A CVSS source descriptor

cwe string A CWE group identification string

last_modified_epoch string An epoch timestamp indicating source last update time

191

NAME TYPE DESCRIPTION

published-epoch string An epoch timestamp indicating source publishing time

references array

severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:

 * `LOW`
 * `MODERATE`
 * `IMPORTANT`
 * `CRITICAL`
 * `NOT_AVAILABLE`
 * `UNKNOWN`

severity_index integer A 5 point scale numerical description of Severity level with 5 being greatest
and 0 being unknown

static_id integer An OPSWAT identifier for the vulnerability

verdict integer The vulnerability check's duration in milliseconds
* `0` - No Vulnerability Found
* `1` - Vulnerability Found
* `3` - Failed
* `16` - Processing Timed Out

yara object

hits object

verdict enum ALLOWED: 0, 1, 2, 3, 4
The overall result for the analyzed file. Value will be one of the following:

index	status
0	Clean
1	Found matched data
2	Suspicious
3	Failed
4	Not scanned

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json

192

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.3 GET /hash/{md5|sha1|sha256|sha512}

Fetch Analysis Result By Hash

Retrieve analysis result by hash

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*md5|sha1|sha256|sha512 string Hash value to search. This can be md5, sha1, sha256, sha512

QUERY PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

first integer The first item order in the list child files of archive file
size integer The number of items to be fetched next, counting from the item order indicated in

first header

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an `apikey` for API
calls that require authentication.

rule string Select rule for the analysis, if no header given the default rule will be
selected (URL encoded UTF-8 string of rule name)

193

NAME TYPE EXAMPLE DESCRIPTION

selfonly boolean Useful to archive hash lookup.

Allow specifying to only perform hash lookup against the original archive
file self only,
and skip searching all child files result within the original archive.

Default value is false.
timerange integer Scoping down the recent number of hours that hash lookup task should

start from till now,
instead of searching the entire scan history in MetaDefender Core
database.

Default value is 0. That means no time scope.
include-
inprogress

boolean False (default): API will return "Not Found" if the verdict is in progress.

True:
 If the queried hash has a completed processing result before, API will

return the completed processing result.
 If this hash doesn't have any completed processing result, API will return

this In-progress result.

RESPONSE

STATUS CODE - 200: Get information of file

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

data_id string data identifier of the requested file

dlp_info object

certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
Describes how certain the hit is, possible values:

 * `Very Low`
 * `Low`
 * `Medium`
 * `High`
 * `Very High`

errors object

filename string Output processed file name (pre-configured on engine settings under Core's
worflow rule)

hits object

ccn object

194

NAME TYPE DESCRIPTION

display_name string Credit Card Number, Social Security Number, or in case of RegEx, the name of
the rule that has been given by the user

hits array

after string The context after the matched data.

before string The context before the matched data.

certainty enum ALLOWED: Very Low, Low, Medium, High, Very High
The text version of "certainty_score", possible values:

 * `Very Low`
 * `Low`
 * `Medium`
 * `High`
 * `Very High`

certainty_score integer Is defined by the relevance of the given hit in its context. It is calculated
based on multiple factors such as the number of digits, possible values:
[0-100]

hit string The matched data.

location string The location of the hit that is found in a file.

severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): can be 0 (detected) or 1 (suspicious).

tryRedact boolean If file was redacted or not.

metadata_removal object

result enum ALLOWED: removed, not removed, failed to remove
Result of the metadata removal process, possible values:

 * `removed`
 * `not removed`
 * `failed to remove`

redact object

result enum ALLOWED: redacted, not redacted, failed to redact
Result of the redaction process, possible values:

 * `redacted`
 * `not redacted`
 * `failed to redact`

severity enum ALLOWED: 0, 1
(NOTE: this field is deprecated): represents the severity of the data loss,
possible values:

 * `0` - Certainly is data loss
 * `1` - Might be data loss

verdict enum ALLOWED: 0, 1, 2, 3, 4
The overall result for the scanned file. Possible values:

 * `0` - Clean
 * `1` - Found matched data
 * `2` - Suspicious
 * `3` - Failed
 * `4` - Not scanned

watermark object

195

NAME TYPE DESCRIPTION

result enum ALLOWED: added, not added, failed to add
Result of the watermarking process, possible values:

 * `added`
 * `not added`
 * `failed to add`

download_info object

error_detail string Revealed detailed reason why the download failed.

progress number Only applicable when "status" is `Downloading`, indicates download finished
percentage, in a range of [1, 99].

 * Once hitting 100, the status will be changed to `Download Success`.
 * or other problematic status (`Download Cancelled`, `Download Failed`) if the
download stopped unexpectedly.

status string Indicates download status, which could be either
 - `Downloading`

 - Check `progress` key value for actual download percentage
      ```json
      "download_info": {

          "progress": 7,
          "status": "Downloading",
          "url": "http://192.168.200.97:8080/5gb.zip"

      }
      ```

 - `Download Success`
      ```json
      "download_info": {

          "status": "Download Success",
          "url": "https://secure.eicar.org/eicar.com"

      }
      ```

 - `Download Failed`
 - Check `error_detail` key value for an error explanation

      ```json
      "download_info": {

          "error_detail": "Connection error",
          "status": "Download Failed",
          "url": "http://192.168.200.97:8080/2gb.zip"

      }
      ```

 - `Download Timeout`
 - Expecting to occur when the download progress takes longer than what time

window allowed in MetaDefender Core's pre-configured setting under
workflow rule (under "SCAN" tab)

      ```json
      "download_info": {

          "status": "Download Timeout",
          "url": "http://192.168.200.97:8080/2gb.zip"

      }
      ```

 - `Download Cancelled`
 - Expecting to occur when user explicitly cancelled that file scan request, or

batch request that the scan belongs to
      ```json
      "download_info": {

          "status": "Download Cancelled",
          "url": "http://192.168.200.97:8080/5gb.zip"

      }
      ```

196

NAME TYPE DESCRIPTION

url string Original download link which was specified in HTTP(S) request's
`downloadfrom` header

extraction_info object

decrypted_status enum ALLOWED: Success, Failed
Indicate that decryption phase is successful or not.

err_category string Error category

err_code integer Error code

err_details string Error message

is_encrypted_file boolean Indicate if file is password-protected or not.

file_info object

display_name string The filename reported via `filename` header.

file_size integer Total file size in bytes.

file_type string The filetype using mimetype.

file_type_description string The filetype in human readable format.

md5 string File's MD5 hash.

sha1 string File's SHA1 hash.

sha256 string File's SHA256 Hash.

sha512 string File's SHA512 Hash.

signer_infos array

digest_algorithm string Digest algorithm.

digest_encryption_algorithm string Encryption algorithm.

issuer string Entity that develops and registers the certificate.

serial_number string Serial number of the certificate.

vendor_name string Entity that is issued a certificate and utilize it for creating a digital signature.

version string Version of X.509 that is used in the certificate. This version field is zero-
based.

* 0: v1
* 1: v2
* 2: v3

type_category array

receive_data_timestamp string The timestamp when upload progress started (first byte received) (in
milliseconds)

upload_time integer Total time elapsed for upload process (in milliseconds).

upload_timestamp string The timestamp when upload progress finished (all bytes received) (in
milliseconds)

filetype_info object

file_info* object

197

NAME TYPE DESCRIPTION

description* string File type description

detected_by string Analyzer that detected the file type

encrypted* boolean File is password-protected or not

extensions* string File type extension

groupID* string File type category

groupIDs* array

group_description string File type category description

likely_type_ids array

score* integer Likelihood score of the file type

typeID* string File type ID

type* string MIME type

typeID* string File type ID

type_ids* array

final_verdict object

verdict* enum ALLOWED: allowed, blocked
Final verdict of the file type analysis.

verdict_explanation* string Explanation of the final verdict.

is_file_type_mismatch boolean Indicates if the file type does not match the expected type.

other_detections array Other file type detections.

result_template_hash string SHA256 Hash of user-interface template. For web console only.

spoofing_info object

detection_result string Result of the spoofing detection.

result_explanation string Explanation of the spoofing detection result.

result_overview string Overview of the spoofing detection result.

opswatfilescan_info object

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

blocked_reasons array

file_type_skipped_scan boolean Indicates if the input file's detected type was configured to skip scanning.

hash_time integer Total time elapsed for computing hashes (in milliseconds).

outdated_data array

processing_time integer Total time elapsed during processing file (in milliseconds).

processing_time_details object

av_scan_time integer AV engines' processing time.

198

NAME TYPE DESCRIPTION

cdr_time integer Deep CDR engine's sanitization time.

dlp_time integer Proactive DLP engine's processing time.

extraction_time integer Archive extraction engine's processing time.

filetype_time integer FileType engine's processing time.

opswatfilescan_time integer OPSWAT Filescan engine's processing time.

others_time integer Total time elapsed for following processing tasks in the product (in
milliseconds):
* Decryption time (if receiving an encrypted file)
* External scanner (if configured)
* Post action (if configured)
* Other internal processing time among components in the product

parse_dgsg_time integer Digital signature analyzing time.

vul_time integer Vulnerability engine's lookup time.

yara_time integer YARA engine's processing time.

filetype_wait_time integer FileType engine's wait time.

profile string The used rule name.

progress_percentage integer Percentage of processing completed (from 1-100).

queue_time integer Total time elapsed for file processing task was waiting in MetaDefender
Core’s queue until being picked up (queue_time = start_time -
upload_timestamp) (in milliseconds).

result string The final result of processing the file (Allowed / Blocked / Processing).

user_agent string Identifier for the REST Client that calls the API.

username string User identifier who submitted scan request earlier.

verdicts array

post_processing object

actions_failed string Empty string if no action failed or list of failed actions, separated by "|".

actions_ran string List of successful actions, separated by "|". Empty string if otherwise.

converted_destination string Contains the name of the sanitized file.

converted_to string Contains target type name of sanitization.

copy_move_destination string Contains target type name of sanitization.

sanitization_details object

cdr_wait_time integer The time in milliseconds that the CDR process took to complete.

description string Action was successful or not.

details array

action* enum ALLOWED: sanitized, removed
The type of action that was performed

count integer The number of objects that were sanitized/removed.

199

NAME TYPE DESCRIPTION

details object

action enum ALLOWED: sanitized, removed
The type of action that was performed

count integer The number of objects that were sanitized/removed.

object_details array

object_name string The object type that was sanitized/removed.

description string Action was successful or not.

file_name string If an embedded file was sanitized.

object_details array

object_name* string The object type that was sanitized/removed.

failure_category string Deep CDR errors are classified into different categories.

For more details, please find [Troubleshooting sanitization failures](https://
docs.opswat.com/mdcore/deep-cdr/troubleshooting-sanitization-failures)

result enum ALLOWED: Sanitized, Sanitized failed, Sanitized skipped
The result of the CDR process.
- **Sanitized**: the file was successfully sanitized.
- **Sanitized failed**: the file could not be sanitized due to an error during the
process.
- **Sanitized skipped**: the file was skipped from sanitization. Common
reasons include the file being digitally signed or other policy-based
exclusions.

result_template_hash string The hash value of the result template, which is used for displaying results on
the Core UI and for internal communication between MetaDefender Core and
the Deep CDR engine.
This value is intended for system use only and is not required for external
integration.

sanitized_file_info object

file_size integer Size of sanitized file in bytes.

sha256 string SHA256 hash of sanitized file.

verdict enum ALLOWED: blocked, allowed
The verdict of the CDR process.
- **blocked**: the file is recommended for blocking by Deep CDR.
- **allowed**: the file is recommended for allowing by Deep CDR as it found
no reason to recommend blocking it.

verdict_explanations array

scan_results object

data_id string Data ID of the requested file

progress_percentage integer Track analysis progress until reaches 100.

200

NAME TYPE DESCRIPTION

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not
Scanned, Encrypted Archive, Exceeded Archive Size,
Exceeded Archive File Number, Password Protected
Document, Exceeded Archive Timeout, Mismatch, Potentially
Vulnerable File, Cancelled, Sensitive Data Found, Yara
Rule Matched, Potentially Unwanted, Unsupported File
Type, Extraction Failed, Scan Failed, Suspicious Verdict
by Sandbox, Likely Malicious Verdict by Sandbox,
Malicious Verdict by Sandbox, Blocked Verdict by Sandbox,
Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by
SBOM, Blocked Verdict by SBOM, Blocked by Post Action,
Known Bad, Known Good, Unknown, Allowed Verdict by COO,
Blocked Verdict by COO, Unknown Verdict by COO, In
Progress, Skip Processing Fast Symlink
The overall scan result as string

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

start_time string Timestamp when the scanning process starts.

total_avs integer Total number of scanning engines used as part of this analysis.

total_time integer Total time elapsed during scan (in milliseconds).

scan_details object

ClamAV object

def_time string The database definition time for this engine

eng_id string The unique identification string for the engine

location string Where this engine is deployed (local/remote).

scan_result_i integer Scan result as index in the Processing Results table

scan_time integer The time elapsed during scan with this engine (in milliseconds).

threat_found string The threat name, IF scan result is Infected or Suspicious. Otherwise empty
string or error message from the engine.

wait_time integer Time elapsed between sending file to Core and receiving the result from the
engine (in milliseconds).

vulnerability_info object

result object

code integer The result code for vulnerability check, 0 means a successful check

hash string The file's SHA1 hash value

method enum ALLOWED: 50700
The method used by OESIS Framework, it should be 50700 every time.

timestamp string Timestamp of the request issued

201

NAME TYPE DESCRIPTION

timing integer The vulnerability check's duration in milliseconds

detected_product object

has_kb boolean Indicates whether any KBs or MSBs exist for this hash

has_vulnerability boolean Indicates whether any vulnerabilities have been associated with the particular
product

is_current boolean True if this product's patch level is current, defaults to true

product object

id integer The OPSWAT product id

name string The product name

remediation_link string A link where product updates or patches can be obtained

severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:

 * `LOW`
 * `MODERATE`
 * `IMPORTANT`
 * `CRITICAL`
 * `NOT_AVAILABLE`
 * `UNKNOWN`

sig_name string Product signature descriptor

signature integer OPSWAT signature id

vendor object

id integer The OPSWAT vendor id

name string The vendor name

version string The installed product version

version_data object

count_behind integer The number of patches behind of the installed product

feed_id integer The remote feed ID used to determine patch level

version string The current version of the product in the remote feed

vulnerabilites array

description string A text description of the specific vulnerability

details object

cpe string A CPE product reference

cve string A CVE identification string

cvss object

access-complexity string A CVSS access-complexity descriptor

access-vector string A CVSS access-vector descriptor

authentication string A CVSS authentication descriptor

202

NAME TYPE DESCRIPTION

availability-impact string A CVSS availability impact descriptor

confidentiality-
impact

string A CVSS confidentiality impact descriptor

generated-on-
epoch

string An epoch timestamp indicating CVSS generation time

integrity-impact string A CVSS integrity impact descriptor

score string A CVSS 10-point severity score

source string A CVSS source descriptor

cwe string A CWE group identification string

last_modified_epoch string An epoch timestamp indicating source last update time

published-epoch string An epoch timestamp indicating source publishing time

references array

severity enum ALLOWED: LOW, MODERATE, IMPORTANT, CRITICAL,
NOT_AVAILABLE, UNKNOWN
String description of Severity level:

 * `LOW`
 * `MODERATE`
 * `IMPORTANT`
 * `CRITICAL`
 * `NOT_AVAILABLE`
 * `UNKNOWN`

severity_index integer A 5 point scale numerical description of Severity level with 5 being greatest
and 0 being unknown

static_id integer An OPSWAT identifier for the vulnerability

verdict integer The vulnerability check's duration in milliseconds
* `0` - No Vulnerability Found
* `1` - Vulnerability Found
* `3` - Failed
* `16` - Processing Timed Out

yara object

hits object

verdict enum ALLOWED: 0, 1, 2, 3, 4
The overall result for the analyzed file. Value will be one of the following:

index	status
0	Clean
1	Found matched data
2	Suspicious
3	Failed
4	Not scanned

STATUS CODE - 404: Invalid hash format

203

1.4 GET /file/rules

Fetching Available Analysis Rules

Retrieve all available rules with their custom configurations. Fetching available processing
rules.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.
Only those rules are returned, that:

 * Match the apikey's role sent using the apikey header, or
 * Are not restricted to a specific role.

user_agent string The user agent string value sent in the header (specified by the client).

Only those rules are returned, that:
 * Match the client's user agent sent using the user_agent header, or
 * Are not restricted to a specific user agent.

For details see KB article [What are Security Policies and how do I use them?]
(https://onlinehelp.opswat.com/corev4/
What_are_Security_Policies_and_how_do_I_use_them_.html).

RESPONSE

STATUS CODE - 200: Returns the list of available rules.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

max_file_size integer The maximum allowed file size (in bytes) for this rule.

name string A unique identifier for identify in the used rule for a scan..

global_timeout object

value integer The timeout value in seconds.

enabled boolean Indicates whether the global timeout is enabled.

204

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.5 GET /file/converted/{data_id}

Download Sanitized Files

Retrieve sanitized file based on the data_id

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*data_i
d

string 8101abae27be4d63859c55d9e0ed0135 The data_id comes from the result of `Analyze a
file`. In case of sanitizing the content of an
archive, the data_id of contained file can be
found in `Fetch analysis result`.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Returns the sanitized content.

RESPONSE MODEL - application/octet-stream

205

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.6 GET /file/download/{data_id}

Download either sanitized files or DLP processed files

Retrieve sanitized file based on the data_id. In case there's no sanitized file, and DLP
processed file is available, user will retrieve DLP processed file.

206

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*data_i
d

string 8101abae27be4d63859c55d9e0ed0135 The data_id comes from the result of `Analyze a
file`. In case of sanitizing the content of an
archive, the data_id of contained file can be
found in `Fetch analysis result`.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Returns the sanitized or DLP processed content.

RESPONSE MODEL - application/octet-stream

STATUS CODE - 404: File could not be found

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "File could not be found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

207

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.7 POST /file/{data_id}/cancel

Cancel File Analysis

When cancelling a file analysis, the connected analysis (e.g. files in an archive) that are still in
progress will be cancelled also.

The cancelled analysis will be automatically closed.

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*data_id string Unique submission identifier.
Use this value to reference the submission.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

208

RESPONSE

STATUS CODE - 200: Analysis was sucessfully cancelled.

RESPONSE MODEL - application/json

EXAMPLE:

{
 "<<data_id>>": "cancelled"
}

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Data ID not found (invalid id) or Requests resource was not found

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json

209

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

210

2. AUTH

 Authentication APIs
User authentication is done via username & password.

2.1 POST /login

Login

Initiate a new session. Required for using protected REST APIs.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

user* string Username

password* string User's password

EXAMPLE:

{
 "user": "admin",
 "password": "admin"
}

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

oms-csrf-token* string The randomly generated token used to prevent CSRF attacks

session_id* string The apikey used to make API calls which requires authentication

STATUS CODE - 403: Invalid credentials

211

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string <error message> will describe the incident. More details would be logged in MetaDefender Distributed Cluster
services logs

EXAMPLE:

{
 "err": "Failed to login"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

2.2 POST /logout

Logout

Destroy session for not using protected REST APIs.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

212

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

response* string

STATUS CODE - 400: Bad Request.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err* string

STATUS CODE - 403: Invalid user information.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err* string

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

213

3. BATCH

Group the analysis requests in batches. Supported with endpoints: MetaDefender Distributed
Cluster API Gateway.

3.1 POST /file/batch

Initiate Batch

Create a new batch and retrieve the batch_id

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

rule string Select rule for the analysis, if no header given the default rule will be selected
(URL encoded UTF-8 string of rule name)

user_agent string user_agent header used to identify (and limit) access to a particular rule. For
rule selection, `rule` header should be used.

user-data string Name of the batch (max 1024 bytes, URL encoded UTF-8 string).

RESPONSE

STATUS CODE - 200: Batch created successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

batch_id* string The batch identifier used to submit files in the batch and to close the batch.

EXAMPLE:

214

{
 "batch_id": "74c85f475147439bac4d33b181853923"
}

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

3.2 POST /file/batch/{batchId}/close

Close Batch

215

The batch will be closed and files can no longer be added to the current batch.

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch successfully closed.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

batch_files object

batch_count integer The total number of files/entries in the batch.

files_in_batch array

data_id string Unique identifer for the file.

detected_by integer Total number of engines that detected this file.

display_name string The filename reported via `filename` header.

file_size integer Total file size in bytes.

file_type string The filetype using mimetype.

file_type_description string The filetype in human readable format.

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

progress_percentage integer Percentage of processing completed (from 1-100).

result string The final result of processing the file (Allowed / Blocked / Processing).

verdicts array

216

NAME TYPE DESCRIPTION

progress_percentage integer Track analysis progress until reaches 100.

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by COO, Blocked Verdict
by COO, Unknown Verdict by COO, In Progress, Skip Processing
Fast Symlink
The overall scan result as string

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

scanned_with integer The total number of engines used to analyze this file.

first_index integer The starting index in the batch. Used for pagination.

page_size integer The number of entries per page.

batch_id string The batch unique identifer

is_closed boolean The batch status (open/close).

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

file_type_skipped_scan boolean Indicates if the input file's detected type was configured to skip scanning.

profile string The used rule name.

result string The final result of processing the file (Allowed / Blocked / Processing).

user_agent string Identifier for the REST Client that calls the API.

username string User identifier who submitted scan request earlier.

scan_results object

batch_id string The batch unique identifer

217

NAME TYPE DESCRIPTION

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by COO, Blocked Verdict
by COO, Unknown Verdict by COO, In Progress, Skip Processing
Fast Symlink
The overall scan result as string

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

start_time string Timestamp when the scanning process starts.

total_avs integer Total number of scanning engines used as part of this analysis. Not like files, batch
is not processed by engine, so this value is always 0.

total_time integer Total time elapsed during scan (in milliseconds).

user_data string Metadata submitted at batch creation.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

218

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

3.3 GET /file/batch/{batchId}

Status of Batch Analysis

Retrieve status report for the entire batch

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

219

QUERY PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

first integer The first item order in the list of files in this batch
size integer The number of items to be fetched next, counting from the item order indicated in

first header

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch progress paginated report (50 entries/page).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

batch_files object

batch_count integer The total number of files/entries in the batch.

files_in_batch array

data_id string Unique identifer for the file.

detected_by integer Total number of engines that detected this file.

display_name string The filename reported via `filename` header.

file_size integer Total file size in bytes.

file_type string The filetype using mimetype.

file_type_description string The filetype in human readable format.

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

progress_percentage integer Percentage of processing completed (from 1-100).

result string The final result of processing the file (Allowed / Blocked / Processing).

verdicts array

progress_percentage integer Track analysis progress until reaches 100.

220

NAME TYPE DESCRIPTION

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by COO, Blocked Verdict
by COO, Unknown Verdict by COO, In Progress, Skip Processing
Fast Symlink
The overall scan result as string

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

scanned_with integer The total number of engines used to analyze this file.

first_index integer The starting index in the batch. Used for pagination.

page_size integer The number of entries per page.

batch_id string The batch unique identifer

is_closed boolean The batch status (open/close).

process_info object

blocked_reason string Provides the reason why the file is blocked (if so).

file_type_skipped_scan boolean Indicates if the input file's detected type was configured to skip scanning.

profile string The used rule name.

result string The final result of processing the file (Allowed / Blocked / Processing).

user_agent string Identifier for the REST Client that calls the API.

username string User identifier who submitted scan request earlier.

scan_results object

batch_id string The batch unique identifer

221

NAME TYPE DESCRIPTION

scan_all_result_a enum ALLOWED: No Threat Detected, Infected, Suspicious, Failed,
Whitelisted, Blacklisted, Exceeded Archive Depth, Not Scanned,
Encrypted Archive, Exceeded Archive Size, Exceeded Archive
File Number, Password Protected Document, Exceeded Archive
Timeout, Mismatch, Potentially Vulnerable File, Cancelled,
Sensitive Data Found, Yara Rule Matched, Potentially Unwanted,
Unsupported File Type, Extraction Failed, Scan Failed,
Suspicious Verdict by Sandbox, Likely Malicious Verdict by
Sandbox, Malicious Verdict by Sandbox, Blocked Verdict by
Sandbox, Blocked Verdict by Deep CDR, Global Timeout Exceeded,
Vulnerable Verdict by SBOM, Non-vulnerable Verdict by SBOM,
Blocked Verdict by SBOM, Blocked by Post Action, Known Bad,
Known Good, Unknown, Allowed Verdict by COO, Blocked Verdict
by COO, Unknown Verdict by COO, In Progress, Skip Processing
Fast Symlink
The overall scan result as string

scan_all_result_i enum ALLOWED: 0, 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 38, 39, 40, 41, 42, 43, 255, 1014
The overall scan result as index in the Processing Results table.

start_time string Timestamp when the scanning process starts.

total_avs integer Total number of scanning engines used as part of this analysis. Not like files, batch
is not processed by engine, so this value is always 0.

total_time integer Total time elapsed during scan (in milliseconds).

user_data string Metadata submitted at batch creation.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

222

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

3.4 GET /file/batch/{batchId}/certificate

Download Signed Batch Result

Download digitally signed status report for the entire batch

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

223

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Signed batch result and certificate are sent back in response body (YAML format).

RESPONSE MODEL - application/x-yaml

EXAMPLE:

"--- batch_id: 092876200fb54cfb80b6e3332c410ae9 user_data: the user data from the header from
batch creation cert_sha1_fingerprint: <some cert serial value> batch_files:\n batch_count:
1\n files_in_batch:\n - data_id: 9112b225f0634f189a2bb46ec1a7826f\n display_name:
New%20Text%20Document.txt\n file_size: 5\n scan_all_result_i: 0\n process_info:\n
blocked_reason:\n result: Allowed\n md5: 42b130c3ce46e058f30712838cebf420\n sha1:
ed94baf55ca851055fb76045f6949bca2f865605\n sha256:
f4191b3ec6ce93aaf712919a38e52815c5da9c91d2b141df920bc8bcb5cbb8e3\n sha512: \"\"\n
vulnerabilities:\n - cve: CVE-2021-45463\n cvss:\n score: 6.8\n
cvss_3_0:\n base_score: 7.8\n - cve: CVE-2018-12713\n cvss:\n
score: 6.4\n cvss_3_0:\n base_score: 9.1\nprocess_info:\n blocked_reason:\n
file_type_skipped_scan: false\n profile: File scan\n result: Allowed\n user_agent:
webscan\nscan_results:\n scan_all_result_a: No Threat Detected\n scan_all_result_i: 0\n
start_time: 2017-05-23T11:22:03.010Z\n total_avs: 14\n total_time: 995\n...\n--- signature:
881d22220c4ca0557d7c7d5c5794d53a8a2780997cd65b27b6e7f1c099a15de03dbcb5edbeaea7aafa6099fab37be
07017b39e3e3a7d66c550f44eb59a096c54d5b9555cb28198546fbec57c33b717751d333a09733d95dd876e2798d0
44c8caef828f4352b91f9a6d057253bb1a9461e0e0e0bf4313a80895998d645bebc81841ff3499589c80ffc4e8a19
0d1ec9b3e4126d86659d303b0e1f22d9289c9c4671d35532b55ad4620e048a78bb405b573897da63efdd5f036692c
934a82d9bdc9b9862e7fea5e8abeeb1444be0689d50373c5c0632484950c0fe0337ed5f91bdf26986f7cff8aa3431
bf4bc948fc127c16ba13ec679fe9f67e7586075c1f467454fa8cf40e9cd501291c95d862eb16f4477c17d1711294f
0ff2b3a1140bd53dbd1fbb0846af6062e9e4e2e1a09af3448503ed11e342164e535fc268bf7d8fbc28ed946cd2bb8
ea075f2295d2fa8392076d41608c3b5decf8fab3a5ec7de190f07583331e0517e5f361735cd59326622dc8b07b10a
464028de781a063e408f918c1d5534329140f4e4dc1a717d808d6784410410b00d36cb9a345f5bbc11fa1c58ee28f
8e7b863f3ea2c923ec5fb2ac29eaa4ddc0d6d9dfd3f16a97f207dc2858410a577c7f4a92ff01bad3229f5fcdb08e2
1df9869a113272aa9d96bfdfe8bfb3a50414c174e16a3504e5780c2718779b0757298546f287ef7ea86e67510d48a
8 certificate: |\n -----BEGIN CERTIFICATE-----\n
MIIGJzCCBA+gAwIBAgIBATANBgkqhkiG9w0BAQUFADCBsjELMAkGA1UEBhMCRlIx\n
DzANBgNVBAgMBkFsc2FjZTETMBEGA1UEBwwKU3RyYXNib3VyZzEYMBYGA1UECgwP\n
d3d3LmZyZWVsYW4ub3JnMRAwDgYDVQQLDAdmcmVlbGFuMS0wKwYDVQQDDCRGcmVl\n
bGFuIFNhbXBsZSBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIjAgBgkqhkiG9w0BCQEW\n
E2NvbnRhY3RAZnJlZWxhbi5vcmcwHhcNMTIwNDI3MTAzMTE4WhcNMjIwNDI1MTAz\n
MTE4WjB+MQswCQYDVQQGEwJGUjEPMA0GA1UECAwGQWxzYWNlMRgwFgYDVQQKDA93\n
d3cuZnJlZWxhbi5vcmcxEDAOBgNVBAsMB2ZyZWVsYW4xDjAMBgNVBAMMBWFsaWNl\n
MSIwIAYJKoZIhvcNAQkBFhNjb250YWN0QGZyZWVsYW4ub3JnMIICIjANBgkqhkiG\n
9w0BAQEFAAOCAg8AMIICCgKCAgEA3W29+ID6194bH6ejLrIC4hb2Ugo8v6ZC+Mrc\n
k2dNYMNPjcOKABvxxEtBamnSaeU/IY7FC/giN622LEtV/3oDcrua0+yWuVafyxmZ\n yTKUb4/GUgafRQPf/
eiX9urWurtIK7XgNGFNUjYPq4dSJQPPhwCHE/LKAykWnZBX\n
RrX0Dq4XyApNku0IpjIjEXH+8ixE12wH8wt7DEvdO7T3N3CfUbaITl1qBX+Nm2Z6\n q4Ag/

224

u5rl8NJfXg71ZmXA3XOj7zFvpyapRIZcPmkvZYn7SMCp8dXyXHPdpSiIWL2\n uB3KiO4JrUYvt2GzLBUThp+lNSZaZ/
Q3yOaAAUkOx+1h08285Pi+P8lO+H2Xic4S\n
vMq1xtLg2bNoPC5KnbRfuFPuUD2/3dSiiragJ6uYDLOyWJDivKGt/72OVTEPAL9o\n
6T2pGZrwbQuiFGrGTMZOvWMSpQtNl+tCCXlT4mWqJDRwuMGrI4DnnGzt3IKqNwS4\n
Qyo9KqjMIPwnXZAmWPm3FOKe4sFwc5fpawKO01JZewDsYTDxVj+cwXwFxbE2yBiF\n
z2FAHwfopwaH35p3C6lkcgP2k/zgAlnBluzACUI+MKJ/G0gv/uAhj1OHJQ3L6kn1\n SpvQ41/
ueBjlunExqQSYD7GtZ1Kg8uOcq2r+WISE3Qc9MpQFFkUVllmgWGwYDuN3\n
Zsez95kCAwEAAaN7MHkwCQYDVR0TBAIwADAsBglghkgBhvhCAQ0EHxYdT3BlblNT\n
TCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwHQYDVR0OBBYEFFlfyRO6G8y5qEFKikl5\n
ajb2fT7XMB8GA1UdIwQYMBaAFCNsLT0+KV14uGw+quK7Lh5sh/JTMA0GCSqGSIb3\n
DQEBBQUAA4ICAQAT5wJFPqervbja5+90iKxi1d0QVtVGB+z6aoAMuWK+qgi0vgvr\n
mu9ot2lvTSCSnRhjeiP0SIdqFMORmBtOCFk/kYDp9M/91b+vS+S9eAlxrNCB5VOf\n PqxEPp/wv1rBcE4GBO/
c6HcFon3F+oBYCsUQbZDKSSZxhDm3mj7pb67FNbZbJIzJ\n
70HDsRe2O04oiTx+h6g6pW3cOQMgIAvFgKN5Ex727K4230B0NIdGkzuj4KSML0NM\n
slSAcXZ41OoSKNjy44BVEZv0ZdxTDrRM4EwJtNyggFzmtTuV02nkUj1bYYYC5f0L\n
ADr6s0XMyaNk8twlWYlYDZ5uKDpVRVBfiGcq0uJIzIvemhuTrofh8pBQQNkPRDFT\n Rq1iTo1Ihhl3/
Fl1kXk1WR3jTjNb4jHX7lIoXwpwp767HAPKGhjQ9cFbnHMEtkro\n
RlJYdtRq5mccDtwT0GFyoJLLBZdHHMHJz0F9H7FNk2tTQQMhK5MVYwg+LIaee586\n
CQVqfbscp7evlgjLW98H+5zylRHAgoH2G79aHljNKMp9BOuq6SnEglEsiWGVtu2l\n hnx8SB3sVJZHeer8f/
UQQwqbAO+Kdy70NmbSaqaVtp8jOxLiidWkwSyRTsuU6D8i\n
DiH5uEqBXExjrj0FslxcVKdVj5glVcSmkLwZKbEU1OKwleT/iXFhvooWhQ==\n -----END CERTIFICATE-----
\n...\n"

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

225

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

3.5 POST /file/batch/{batchId}/cancel

Cancel Batch

When cancelling a batch, the connected analysis that are still in progress will be cancelled
also.

The cancelled batch will be closed.

REQUEST

PATH PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*batchId string The batch identifier used to submit files in the batch and to close the batch.

HEADER PARAMETERS

226

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Batch cancelled.

RESPONSE MODEL - application/json

EXAMPLE:

{
 "<<batch_id>>": "cancelled"
}

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Batch not found (invalid id)

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

227

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

228

4. LICENSE

Retrieve the current license information.

4.1 GET /admin/license

Get current license information

Fetch details about the longest expiry active license among all activated licenses.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Information about the licensed product (product type, number of activations,
deploymentId, expiration date and days left)

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

days_left integer Number of days left before expiration

expiration string Expiration date in MM/DD/YYYY format.

licensed_engines array

licensed_to string Name of the entity to which the license is issued.

max_agent_count string Total number of deployed MetaDefender Agents attached to this MetaDefender Core instance.

online_activated boolean Track online/offline activation mode

product_id string Official MetaDefender base SKU licensed.

229

NAME TYPE DESCRIPTION

product_name string Official MetaDefender base product name licensed.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

230

5. STATS

Health check and statistics about MetaDefender Core instance usage.

5.1 GET /stat/engines

Engine Status

Return the status of the latest engines between the MetaDefender Core instances.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: An array with all the engines and their details.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

abandoned boolean Indicates if this engine is abandoned.

active boolean If used by at least one engine

def_time string The database definition time for this engine

download_progress integer The percentage progress of download

download_time string When this engine downloaded from the update server.

eng_id string Engine internal ID

eng_name string Engine name

eng_type string Engine type in human readable form

231

NAME TYPE DESCRIPTION

eng_ver string Engine's version (format differs from one engine to another).

engine_type enum ALLOWED: av, archive, filetype
Engine's type:

 * av
 * archive
 * filetype

notified_messages array A list of messages from engine.

pinned boolean Indicate if this engine is pinned.

state enum ALLOWED: downloading, downloaded, staging, production, removed,
temporary failed, permanently failed, content invalid, download
failed
Status of the engine:

 * downloading
 * downloaded
 * staging
 * production
 * removed
 * temporary failed
 * permanently failed
 * content invalid
 * download failed

type string The type of information, whether it is engine or engine's database.

5.2 GET /stat/nodes

Instance Status Overview

Retrieve status details of all available MetaDefender Core instances.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Status details of MetaDefender Core instances.

232

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

external_nodes_allowed boolean Indicates whether external nodes can connect; always true.

max_node_count integer Total number of available MetaDefender Core instances.

statuses array

address string Location of the Core instance; currently always return empty string.

available_mem integer The number of available RAM in this system.

cpu_cores integer The number of CPU Cores allocated to this Core instance.

current_processing_files integer Number of objects currently being processed by the Core instance.

engines array

active boolean If used by at least one engine

db_ver string The database version for this engine

def_time string The database definition time for this engine

download_time string The database download time for this engine

eng_name string Engine name

eng_ver string Engine's version (format differs from one engine to another).

engine_type enum ALLOWED: av, archive, filetype
Engine's type:

 * av
 * archive
 * filetype

id string Engine internal ID

issues array A list of all potential problems on this engine.

free_disk_space integer Reported available disk on Core instance (in bytes).

id string Identifier of the worker that deployed this Core instance.

info_disk_space array

dirs array list of directories used by MetaDefender Core.

free integer Free space on the disk (in bytes).

location string Disk location.

total integer Total space on the disk (in bytes).

issues array

description string Text detailing the issue.

severity string How important is the reported issue.

load integer Current CPU utilization on Core instance (in percentage).

os string Current used OS

scan_queue integer Number of objects currently being processed by the Core instance.

233

NAME TYPE DESCRIPTION

scan_queue_details object

archive_scan_queue_ratio number Ratio of archive scan queue, always -1 for Core in Cluster mode.

available_slots integer The number of slots is available, always -1 for Core in Cluster mode.

extracted_file_slots integer Number of child files being processing

file_slots integer Number of files taken from REST by the current Core instance

total_scan_queue integer Total scan queue, always -1 for Core in Cluster mode.

total_disk_space integer The amount of disk space is allocated on Core instance (in Byte).

total_mem integer How much memory is allocated on Core instance (in MB).

total_scan_queue integer The maximum queue size is allowed, always -1 for Core in Cluster mode.

uptime integer How long this Core is in operation (in second).

version string Product version

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

5.3 GET /readyz

Get health check status

234

Fetch current status of system health.

REQUEST

QUERY PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

verbose boolean true Optional. Show detailed result of system health.

RESPONSE

STATUS CODE - 200: System is currently healthy.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

status* boolean System-wide status, indicate if all components are healthy.

scan_queue object

number_in_queue* integer Number of objects being processed by the system.

status* boolean The operational status of the scan process; true if the system contains the required
minimum of healthy MetaDefender Core instances.

license* object

status* enum ALLOWED: expired, invalid, ok
License status.

components* object

status* boolean Aggregate component status.

datalake object

status boolean DataLake overall status.

detail string Status detail message

caching object

status boolean Caching overall status.

detail string Status detail message.

broker object

status boolean Broker overall status.

detail string Status detail message.

filestorage object

235

NAME TYPE DESCRIPTION

status boolean File storage overall status.

detail string Status detail message.

identity object

status boolean Identity service overall status.

detail string Status detail message.

ometascan object

status* boolean MetaDefender Core overall status.

detail string Detail message.

instance object

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

STATUS CODE - 503: System is currently unhealthy.

236

API Reference

Control Center
API Version: v2.4.0

 Developer Guide

This is the API documentation for MetaDefender Distributed Cluster Control Center Public API.
If you would like to evaluate or have any questions about this documentation, please contact
us via our Contact Us form.

 How to Interact with MetaDefender Distributed
Cluster Control Center using REST API
The MetaDefender Distributed Cluster Control Center empowers administrators and system
engineers to efficiently manage system operations, including:

Establishing and maintaining essential service connections.1.

237

https://www.opswat.com/contact
https://www.opswat.com/contact

Deploying and managing MetaDefender Core, MetaDefender Distributed Cluster API 2.
Gateway instances.
Managing licenses.3.
Administering user accounts and access controls.4.
Configuring and enforcing security protocols.5.
Monitoring the overall system health and system performance.6.

OPSWAT recommends using the JSON-based REST API. The available methods are
documented below.

OPSWAT provides some sample codes on GitHub to make it easier to understand how the
MetaDefender REST API works.

CONTACT

NAME: API Support
EMAIL: feedback@opswat.com
URL: https://github.com/OPSWAT/metadefender-core-openapi3
Terms of service: https://onlinehelp.opswat.com/policies/

238

https://github.com/OPSWAT
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://github.com/OPSWAT/metadefender-core-openapi3
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/
https://onlinehelp.opswat.com/policies/

Security and Authentication
SECURITY SCHEMES

KEY TYPE DESCRIPTION

apikey apiKey Generated `session_id` from [Login](/docs/mdcore/metadefender-
distributed-cluster/ref#userlogin) call can be used as an `apikey` for API
calls that require authentication.

239

API
1. USER MANAGEMENT

 User management APIs
The APIs for manage users and user directories.

1.1 GET /admin/user

List all users

Returns a list of all users in the server.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: List of users retrieved successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

api_key string Associated apikey with this user

directory_id integer To which User Directories belongs to (LOCAL/System/etc.)

display_name string Which is the name showed in the Management Console

email string User's email address

id integer User's unique identifier

240

NAME TYPE DESCRIPTION

name string User's full name

description string User's description, 256 characters maximum

roles array

ui_settings object

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.2 POST /admin/user

241

Create user

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

api_key string Associated apikey with this user

directory_id integer To which User Directories belongs to (LOCAL/System/etc.)

display_name string Which is the name showed in the Management Console

email string User's email address

name string User's full name

description string User's description, 256 characters maximum

roles array

ui_settings object

password string The user's password

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

api_key string Associated apikey with this user

directory_id integer To which User Directories belongs to (LOCAL/System/etc.)

display_name string Which is the name showed in the Management Console

email string User's email address

name string User's full name

description string User's description, 256 characters maximum

roles array

ui_settings object

242

STATUS CODE - 400: Bad Request (e.g. invalid header, invalid request body).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

243

{
 "err": "<error message>"
}

1.3 DELETE /admin/user/{user_id}

Delete a user

Delete a user by id from the system.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json

EXAMPLE:

{
 "result": "Success"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

244

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Item does not exist"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not allowed"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

1.4 POST /user/changepassword

Change Password for local user

Modify the current password for the user identified by apikey

245

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

old_password string The current password in plain text

new_password string The new password in plain text

EXAMPLE:

{
 "old_password": "admin",
 "new_password": "123456"
}

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

result string

STATUS CODE - 400: Bad Request (e.g. invalid header, invalid request body).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

246

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

247

2. ADMIN

Admin specific API requests.

2.1 GET /admin/userdirectory

List all user directories

Retrieve a list of all user directories configured in the system.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: List of user directories retrieved successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

id integer Internal used identifier

name string Name of the user directory

type string Type of the user directory (e.g., LDAP, Local, etc.)

enabled boolean If the user directory is enabled or not

lockout_attempts integer Number of failed login attempts before the user is locked out

lockout_timeout integer Time in seconds before the user can try to log in again after being locked out

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

248

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

2.2 POST /admin/role

Create new role

Add a new user role to the system.

REQUEST

249

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

name string The name identifier of the role

display_name string The extended name showed in the Management Console.

rights object

cert array

configlog array

engines array

license array

retention array

rule array

scanlog array

update array

updatelog array

users array

workflow array

zone array

healthcheck array

fetch array

download array

deployment array

service array

packageupload array

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

250

NAME TYPE DESCRIPTION

name string The name identifier of the role

display_name string The extended name showed in the Management Console.

rights object

cert array

configlog array

engines array

license array

retention array

rule array

scanlog array

update array

updatelog array

users array

workflow array

zone array

healthcheck array

fetch array

download array

deployment array

service array

packageupload array

editable* boolean If the role can be altered or not.

id* integer Internal used identifier

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json

251

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

2.3 DELETE /admin/role/{role_id}

Delete a role

Delete a role by id from the system.

REQUEST

252

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json

EXAMPLE:

{
 "result": "Success"
}

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

253

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Item does not exist"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not allowed"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

254

3. AUTH

 Authentication APIs
User authentication is done via username & password.

3.1 POST /login

Login

Initiate a new session. Required for using protected REST APIs.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

user* string Username

password* string User's password

EXAMPLE:

{
 "user": "admin",
 "password": "admin"
}

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

oms-csrf-token* string The randomly generated token used to prevent CSRF attacks

session_id* string The apikey used to make API calls which requires authentication

STATUS CODE - 403: Invalid credentials

255

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string <error message> will describe the incident. More details would be logged in MetaDefender Distributed Cluster
services logs

EXAMPLE:

{
 "err": "Failed to login"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

3.2 POST /logout

Logout

Destroy session for not using protected REST APIs.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

256

STATUS CODE - 200: OK

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

response* string

STATUS CODE - 400: Bad Request.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err* string

STATUS CODE - 403: Invalid user information.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err* string

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

257

4. CONFIG

Configure the product through APIs (especially the Settings). Will require admin apikey..

4.1 PUT /admin/config/auditlog/cleanup

Audit clean up

Setting audit record cleanup time (cleanup records older than).

Note: The cleanup range is defined in hours.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted. _**Note**_: If
`cleanuprange` is `0`, the cleanup functionality will be disabled.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

258

NAME TYPE DESCRIPTION

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.2 PUT /admin/config/filestorage/cleanup

File storage clean up

259

Setting file storage clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted. _**Note**_: If
`cleanuprange` is `0`, the cleanup functionality will be disabled.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

260

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.3 PUT /admin/config/warehouse/cleanup

Executive report clean up

Setting executive report clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted. _**Note**_: If

261

NAME TYPE DESCRIPTION

`cleanuprange` is `0`, the cleanup functionality will be disabled.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

262

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.4 PUT /admin/config/scanhistory/cleanup

Processing history clean up

Setting processing history clean up time (clean up records older than).

Note:The clean up range is defined in hours.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted. _**Note**_: If
`cleanuprange` is `0`, the cleanup functionality will be disabled.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json

263

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

cleanuprange integer The number of hours of data retention. Anything older than this number will be deleted.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.5 PUT /admin/config/session

Session settings

264

Configure settings for session generated upon a successful login See more at Login

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

absoluteSessionTimeout integer The interval (in milliseconds) for overall session length timeout (regardless of activity).

allowCrossIpSessions boolean Allow requests from the same user to come from different IPs.

allowDuplicateSession boolean Allow same user to have multiple active sessions.

sessionTimeout integer The interval (in milliseconds) for the user's session timeout, based on last activity. Timer
starts after the last activity for the apikey.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

absoluteSessionTimeout integer The interval (in milliseconds) for overall session length timeout (regardless of activity).

allowCrossIpSessions boolean Allow requests from the same user to come from different IPs.

allowDuplicateSession boolean Allow same user to have multiple active sessions.

sessionTimeout integer The interval (in milliseconds) for the user's session timeout, based on last activity. Timer
starts after the last activity for the apikey.

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

265

/docs/mdcore/metadefender-core/ref#userlogin

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.6 GET /admin/config/sessioncookie

Get session cookie attributes

Getting session cookie attributes

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

266

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

samesite number SameSite attribute accepts three values:
* `Strict` - cookies will only be sent in a first-party context, not be sent along with requests initiated by third party
websites.
* `Lax` - cookies are not sent on normal cross-site subrequests, but are sent when a user is navigating to the
origin site.
* `None` - cookies will be sent in all contexts.

Default value: `Lax`

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

267

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

4.7 PUT /admin/config/sessioncookie

Update session cookie attributes

Modifying session cookie attributes

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

samesite number SameSite attribute accepts three values:
* `Strict` - cookies will only be sent in a first-party context, not be sent along with requests initiated by third party
websites.
* `Lax` - cookies are not sent on normal cross-site subrequests, but are sent when a user is navigating to the origin
site.
* `None` - cookies will be sent in all contexts.

Default value: `Lax`

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully.

268

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

samesite number SameSite attribute accepts three values:
* `Strict` - cookies will only be sent in a first-party context, not be sent along with requests initiated by third party
websites.
* `Lax` - cookies are not sent on normal cross-site subrequests, but are sent when a user is navigating to the
origin site.
* `None` - cookies will be sent in all contexts.

Default value: `Lax`

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"

269

}

270

5. INSTALLERS

Upload and manage installers for the MetaDefender Core and MetaDefender Distributed Cluster
API Gateway.

5.1 GET /admin/installer

Get uploaded installers

Retrieve information about an uploaded installer.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

271

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

5.2 POST /admin/installer

Upload installer

Upload installers for the MetaDefender Core and MetaDefender Distributed Cluster API
Gateway.

272

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apikey string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

*filenam
e

string The name of the installer file to upload. **Note**: Ensure the filename remains
same with the original MY OPSWAT download (e.g: ometascan-5.15.0-1-x64.msi)

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

installer_id string Unique identifier of the uploaded installer.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"

273

}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

5.3 DELETE /admin/installer/{installer_id}

Delete an uploaded installer

Delete an uploaded installer.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

274

RESPONSE

STATUS CODE - 200: Request processed successfully

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

result string Success message.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

275

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

276

6. SERVICES

Add essential services and view connection status.

6.1 GET /admin/service

Get the status of all essential services.

Retrieve the status of all added services within the MetaDefender Distributed Cluster system.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Details of all added services and their status.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

service_type object

healthy_instances number Number of healthy instances for the service.

overall_status string Aggregated status across all instances of the service.

overall_status_description string Description of the overall status.

instances array

service_id string Unique service identifier.

message string Optional status/message.

display_name string Human friendly name. Defaults to "host:port" if absent.

277

NAME TYPE DESCRIPTION

status_description string Human readable status explanation.

host string Hostname or IP.

port number Service's port.

version string Service version (semantic or other).

added_by string User or system that registered the service.

last_update number Unix epoch milliseconds of last update.

last_healthy number Unix epoch milliseconds of last confirmed healthy state.

detail object

cpu_usage number CPU usage (implementation specific units).

platform string Operating system/platform the service is running on.

role string Service role (e.g. primary, secondary).

db_size number Database size in bytes.

ram object

total_bytes number Total RAM available.

used_bytes number RAM currently in use.

disk object

total_bytes number Total disk space available.

used_bytes number Disk space currently in use.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

278

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.2 POST /admin/service

Connect and check essential services status.

Establish connections and retrieve the status of essential services within the MetaDefender
Distributed Cluster system.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

ONE:OF object

OPTION:1 object

279

NAME TYPE DESCRIPTION

host* string the host address of the service.

port* integer the port number of the service.

connection_key* string the connection key for the service.

OPTION:2 object

host* string the host address of the service

port* integer the port number of the service

user* string the user name for the service.

password* string the password for the service.

OPTION:3 object

host* string the host address of the service.

port* integer the port number of the service.

user string the user name for the service.

password string the password for the service.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

result string the result of the service addition, can be either "ok" or "error"

service_id string The unique identifier of the service if result is "ok"

detail string The error details if result is "error"

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

280

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.3 PUT /admin/service/{service_id}

Edit service details.

281

Update the display name and/or configuration details for a specific service. Note: Service
configuration cannot be modified after instances have been deployed.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

display_name string Display name for the service.

config object

host string the host address of the service

port integer the port number of the service

user string the user name for the service. Applicable for type `caching`, `broker`, `datalake`, and `warehouse`

password string the password for the service. Applicable for type `caching`, `broker`, `datalake`, and `warehouse`

connection_key string the connection key for the service. Applicable for type `filestorage`

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

service_id string Unique service identifier.

message string Optional status/message.

display_name string Human friendly name. Defaults to "host:port" if absent.

status_description string Human readable status explanation.

host string Hostname or IP.

port number Service's port.

version string Service version (semantic or other).

added_by string User or system that registered the service.

282

NAME TYPE DESCRIPTION

last_update number Unix epoch milliseconds of last update.

last_healthy number Unix epoch milliseconds of last confirmed healthy state.

detail object

cpu_usage number CPU usage (implementation specific units).

platform string Operating system/platform the service is running on.

role string Service role (e.g. primary, secondary).

db_size number Database size in bytes.

ram object

total_bytes number Total RAM available.

used_bytes number RAM currently in use.

disk object

total_bytes number Total disk space available.

used_bytes number Disk space currently in use.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

283

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.4 DELETE /admin/service/{service_id}

Disconnect to service and remove their configurations.

Remove the connection and configuration details for a specific service. Note: Service
configuration cannot be deleted after instances have been deployed.

284

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to remove service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

service_id string

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json

285

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.5 GET /admin/service/{service_type}

Get status for a specific service.

Retrieve the current status of a specific service, including all instance details. Note: The
service_type must be one of: datalake, warehouse, caching, broker, filestorage.

286

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to get service type was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

overall_status string Aggregated status for the service type (e.g. healthy, degraded, down)

overall_status_description string Human readable description of the aggregated status

healthy_instances number Count of instances currently considered healthy

instances array

service_id string Unique service identifier.

message string Optional status/message.

display_name string Human friendly name. Defaults to "host:port" if absent.

status_description string Human readable status explanation.

host string Hostname or IP.

port number Service's port.

version string Service version (semantic or other).

added_by string User or system that registered the service.

last_update number Unix epoch milliseconds of last update.

last_healthy number Unix epoch milliseconds of last confirmed healthy state.

detail object

cpu_usage number CPU usage (implementation specific units).

platform string Operating system/platform the service is running on.

role string Service role (e.g. primary, secondary).

db_size number Database size in bytes.

ram object

total_bytes number Total RAM available.

used_bytes number RAM currently in use.

287

NAME TYPE DESCRIPTION

disk object

total_bytes number Total disk space available.

used_bytes number Disk space currently in use.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json

288

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.6 GET /admin/service/{service_type}/setting

Get service settings

Retrieve the current configuration settings for a specific service. Note: Supported only for the
filestorage service type.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to retrieve service settings was successful

289

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

max_replica number Maximum number of replicas, default is 1

min_replica number Minimum number of replicas, default is 1

cleanuprange number Cleanup interval in hours, default is 0

storage object

type string Storage backend type, can be `salt` or `none`

config object

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{

290

 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

6.7 PUT /admin/service/{service_type}/setting

Edit setting of service

Update the configuration settings for a specific service. Note: Supported only for the filestorage
service type.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

max_replica number Maximum number of replicas, default is 1

min_replica number Minimum number of replicas, default is 1

291

NAME TYPE DESCRIPTION

cleanuprange number Cleanup interval in hours, default is 0

storage object

type string Storage backend type, can be `salt` or `none`

config object

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

result string Success message

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

292

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

293

7. WORKERS

Connect, deploy, undeploy and manage workers.

7.1 GET /admin/worker

List connected workers

Retrieve a list of currently connected MetaDefender Distributed Cluster Worker services.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: A list of connected workers.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

worker_id string Unique identifier of the worker.

display_name string Display name for the worker.

platform string Operating system / platform of the worker.

os string Operating system details of the worker.

package_type string The deployment package type.

hardware object

cpu object

count integer Number of CPU cores.

294

NAME TYPE DESCRIPTION

model string CPU model name.

usage number CPU usage percentage.

disk object

available_bytes integer Available disk space in bytes.

total_bytes integer Total disk space in bytes.

memory object

available_bytes integer Available memory in bytes.

total_bytes integer Total memory in bytes.

user_name string Name of the user who added the worker.

host string The address (IP or hostname) of the worker.

port integer Port on which the worker is listening.

status string Current status of worker.

status_description string The description of worker's status

version string The version of the worker.

deployment_info object

type string Deployment type, can be `ometascan` or `api-gateway`.

installer_id string Identifier of the installer.

version string The instance version.

user_name string Name of the user who deployed the instance.

custom_config object

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

295

NAME TYPE DESCRIPTION

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.2 POST /admin/worker

Connect to workers

Connect to MetaDefender Distributed Cluster Worker services.

REQUEST

REQUEST BODY - application/json

296

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

display_name* string Display name for the worker.

host* string The address of the worker.

port* number The port on which the worker is listening.

result* enum ALLOWED: ok, failed
Connection attempt result.

worker_id string Present only when result = ok. Unique identifier of the worker.

error string Present only when result = failed. Error message.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

297

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.3 DELETE /admin/worker

Disconnect from workers

Disconnect from specified MetaDefender Distributed Cluster Worker services.

REQUEST

REQUEST BODY - application/json

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

298

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to disconnect workers was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

worker_id enum ALLOWED: Deleted
Disconnection status of the worker.

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

299

NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.4 GET /admin/worker/available/{installer_id}

Get available workers by installer_id.

Retrieve the list of available workers eligible for deployment for the specified installer ID.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to get available workers was successful

300

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

ARRAY OF OBJECT WITH BELOW STRUCTURE

worker_id string Unique identifier of the worker.

display_name string Display name for the worker.

platform string Operating system / platform of the worker.

os string Operating system details of the worker.

package_type string The deployment package type.

hardware object

cpu object

count integer Number of CPU cores.

model string CPU model name.

usage number CPU usage percentage.

disk object

available_bytes integer Available disk space in bytes.

total_bytes integer Total disk space in bytes.

memory object

available_bytes integer Available memory in bytes.

total_bytes integer Total memory in bytes.

user_name string Name of the user who added the worker.

host string The address (IP or hostname) of the worker.

port integer Port on which the worker is listening.

status string Current status of worker.

status_description string The description of worker's status

version string The version of the worker.

deployment_info object

type string Deployment type, can be `ometascan` or `api-gateway`.

installer_id string Identifier of the installer.

version string The instance version.

user_name string Name of the user who deployed the instance.

custom_config object

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

301

NAME TYPE DESCRIPTION

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 404: Requests resource was not found.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Not found"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

302

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.5 POST /admin/worker/deploy

Deploy workers

Deploy the selected installer on one or more selected workers.

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

ONE:OF object

OPTION:1 object

type* enum ALLOWED: ometascan

installer_id* string Identifier of the installer.

worker* array

license_id string Identifier of the license.

config object

log_level enum DEFAULT:info
ALLOWED: debug, info, warning, error

connection_per_file_service integer >=1
DEFAULT:4

OPTION:2 object

type* enum ALLOWED: api-gateway

installer_id* string Identifier of the installer.

worker* array

cert string Certificate name (default empty). Only for api-gateway.

config object

303

NAME TYPE DESCRIPTION

port integer between 1 and 65535
DEFAULT:8899

log_level enum DEFAULT:info
ALLOWED: debug, info, warning, error

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to add service was successful

RESPONSE MODEL - application/json

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

304

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.6 DELETE /admin/worker/deploy

Undeploy workers

Undeploy the specified workers.

REQUEST

REQUEST BODY - application/json

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

305

STATUS CODE - 200: Request to undeploy workers was successful

RESPONSE MODEL - application/json

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

306

NAME TYPE DESCRIPTION

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

7.7 POST /admin/worker/upgrade

Upgrade deployed instances

Upgrade the deployed instances managed by the worker to a newer version

REQUEST

REQUEST BODY - application/json
NAME TYPE DESCRIPTION

version* string Target version to upgrade to.

type* enum ALLOWED: ometascan, api-gateway
Worker deployment type.

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: Request to upgrade workers was successful

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

result string

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

307

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"

308

}

7.8 GET /admin/worker/upgrade/version

Get upgradable instance version

Retrieve a list of available versions of MetaDefender Core and MetaDefender Distributed Cluster
API Gateway for upgrading.

REQUEST

HEADER PARAMETERS

NAME TYPE EXAMPLE DESCRIPTION

*apike
y

string Generated `session_id` from [Login](/docs/mdcore/metadefender-distributed-
cluster/ref#userlogin) call can be used as an `apikey` for API calls that require
authentication.

RESPONSE

STATUS CODE - 200: A list of available versions for upgrading.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

ometascan* array

api-gateway* array

STATUS CODE - 400: Bad Request (e.g. invalid header, apikey is missing or invalid).

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Invalid header"
}

309

STATUS CODE - 403: Invalid user information or Not Allowed

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 405: The user has no rights for this operation.

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "Access denied"
}

STATUS CODE - 500: Unexpected event on server

RESPONSE MODEL - application/json
NAME TYPE DESCRIPTION

OBJECT WITH BELOW STRUCTURE

err string Error reason

EXAMPLE:

{
 "err": "<error message>"
}

310

